.“AD-A183 394 SS?NECTIONIST LEARNING PROCEDURESCU> CARNEGIE-MELLON

84 SEP 87
UNCLASSIFIED NO9914-86-K

SBURGH PA_DEPT OF COMPUTER SCIENCE G E HINTON
CHU-CS-87-115
-90167. . $NSF-1ST835-20359

Tt

10

————3 T
W E
e ¢

|

125

\

——

gzt

|)

T AT e i v A

T AT AT At -—\-_ -

e

P PN Y AL A 4

"=y

D T o e T T R L I R I e R AL

ﬁ

AL %
-
II(. P,

AD-A185 394
o

ey

>’

A ra
l.A.
’<

el
5N

Y
5

“
A3)

s
L,

for public relesss; distribution unlimited.

P - .
‘-.M‘ TR G ET Y R YW LW N WL NN Y N R W N Y N e T N N T T
e A e T T T g T

R RN A AN AN AN LA AN UM LN U LN O LN LA R U

UNCLASSIFIED

ECURITY CLASSIFICATION OF THIS PA

IR AR AR AR AR I S AN IR M N FU NI NU NI Y S5 2%} o'f a¥h atP a%s a*%’

LP-LE8 -2

REPORT DOCUMENTATION PAGE

Form Approved
OMB8 No. 0704-0188

1a REPORT SECURITY CLASSIFICATION
Unclassified

1b RESTRICTIVE MARKINGS

23 SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE

Approved for public release; distribution
unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
aMU~-Cs-87-115

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL

(If applicable)
Carnegie-Mellon University

7a. NAME OF MONITORING ORGANIZATION

Personnel and Training Research Programs
Office of Naval Research

6¢. ADDRESS (City, State, and ZIP Code)

Department of Computer Science
Pittsburgh, PA 15213

7b. ADDRESS (City, State, and ZIP Code)

800 North Quincy Street
Arlington, VA 22217-5000

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-86-K-00167

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK_UNIT
ELEMENT NO. | NO. NO ACCESSION NO.
61153N RR04206 |RR04206-0B |442b-467

11 TITLE (Include Securnity Classification)
Connectionist learning procedures

12 PERSONAL AUTHOR(S)
Hinton, Geoffrey E.

132 TYPE OF REPORT 13b TIME COVERED

14 DATE OF REPORT (Year, Month, Day) |'S PAGE COUNT

Technical FROM T0 September 4, 1987
16 SUPPLEMENTARY NOTATION
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

Connectionism; learning procedures; neural networks;
gradient descent

19 ABSTRACT (Continue on reverse if necessary and identify by biock number)

OVER
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
O UNCLASSIFED/UNLIMITED BK) SAME AS RPT 3 oric users Unclassified
228 NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (Include Area Code) | 22¢ QFFICE SYMBOL

202-696-4323 1142PT

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICAT:ON OF TH{S PAGE

UNCLASSIFIED

&

Tty N e W

AT

Wa

25 A e A EE N

Fa%

DI, Tt

EN

1 §
-,l ,l,lqu-i

T T

-
e s e

- -

- e
-

O

AN

-’.-

-'.0’"':‘,4“ ":A

\

\

CONNECTIONIST LEARNING PROCEDURES'

Geoffrey E. Hinton?
June 1987
Technical Report CMU-CS-87-115

e —

~

vodes

T e————
or !

i
i

Computer Science Department [Ditivation] T
Carnegie-Mellon University P
Pittsburgh PA 15213 i B AL taigy
T ; VALY
i ! i
; ; !
A-y;
Abstract e L.

\—) A major goal of research on networks of neuron-like processing units is to discover efficient
leaming procedures that allow these networks to construct complex internal representations of their
environment. The learning procedures must be capable of modifying the connection strengths in such a
way that internal units which are not part of the input or output come to represent important features of
the task domain. Several interesting gradient-descent procedures have recently been discovered. Each
connection computes the derivative, with respect to the connection strength, of a global measure of the
error in the the performance of the network. The strength is then adjusted in the direction that decreaes
the error. These relatively simple, gradient-descent learning procedures work well for small tasks and the
new challenge is to find ways of improving the speed of learning so that they can be applied to larger,

more realistic tasks.

'This research was supported by contract NOO014-86-K-00167 from the Office of Naval Research and by grant IST-8520359 from
the National Science Foundati~~.

2author's current address is: Computer Science Department, University of Toronto, 10 Kings College Road. Toronto. Ontano MSS
1A4, Canada.

A ‘ . :] » - v - - -]
AR AR R e, |

R T R X SN T e g e gib gt pth it gti th it anio mlo ot e TN TR0 TR T

Table of Contents
1. Introduction

1
2. Connectionist models 1
3. Connectionist research issues 2
3.1. Search 3
3.2. Representation 3
3.3. Learning 4
4. Assoclative memories without hidden units 5
4.1. Linear associators 5
4.2. Non-linear associative nets 6
+ 4.3. The deficiencies ot associators without hidden units 8
) 5. Simple supervised learning procedures 9
5.1. An LMS procedure for binary threshold units 10
N 5.2. The perceptron convergence procedure 11
X 5.3. The deficiencies of simple learning procedures 12
6. Back-propagation: A muitilayer LMS procedure 13
6.1. The shape of the error surface 14
[6.2. Two examples of back-propagation 14
! 6.3. Back-propagation as a maximum likelihood procedure 15
' 6.4. terative back-propagation ' 16
; 6.5. Self-supervised back-propagation 17
g 6.6. A reinforcement version of back-propagation 18
6.7. The deficiencies of back-propagation 19
K 7. Boltzmann machines 20
4 7.1. Maximizing reinforcement and entropy In a Boltzmann machine 23
5 8. Maximizing mutual Information: A semi-supervised learning procedure 24
N 9. Unsupervised Hebbian learning 25
! - 9.1. A recent development of unsupetvised Hebbian learning - . 2
10. Competitive learning 26
:. 10.1. The relationship between competitive learning and back-propagation 28
;.; 11. Reinforcement learning procedures 30
.:: 11.1. Delayed reinforcement 31
" 11.2. The A p procedure 31
o 11.3. Achieving giobal optimality by reinforcement learning 32
11.4. The relative payoff procedure 32
g 11.5. Genetic algorithms 34
2 11.6. Genetic learning and the relative payoff rule 34
" 11.7. lIterated genetic hill-climbing 35
b 12. Discussion 35
': 12.1. Generalization 35
B 12.2. The speed of learning 37
. 12.3. Hardware modularity 38
) 12.4. Other types of modularity 39
I 12.5. Conclusion 40

-

-
»"o .

—,;sr

‘- - -

-
- - "

‘.-
-

OO0 ottt "fhm;ﬁﬁm W

1. Introduction

Recent technological advances in VLSI and computer aided design mean that it is now much
easier to build massively parallel machines. This has contributed to a new wave of interest in models of
computation that are inspired by neural nets rather than the formal manipulation of symbolic expressions.
To understand human abilities like perceptual interpretation, content-addressable memory, commonsense
reasoning, and leaming it may be necessary to understand how computation is organized in systems like

the brain which consist of massive numbers of richly-interconnected but rather slow processing elements.

This paper focusses on the question of how internal representations can be learned in
"connectionist” networks. These are a recent subclass of neural net models that emphasize
computational power rather than biological fidelity. They grew out of work on early visual processing and
associative memories (Hinton and Anderson, 1981; Feldman and Ballard, 1982; Rumelhart, McClelland
et. al., 1986). The paper starts by reviewing the main research issues for connectionist models and then
describes some of the eartier work on learning procedures for associative memories and simple pattern
recognition devices. These learning procedures cannot generate internal representations: They are

limited to forming simple associations between representations that are specified externally. Recent

research has led to a variefy of more powerful connectionist learning procedures that can discover good

internal representations and most of the paper is devoted to a survey of these procedures.

2. Connectionist models
Connectionist models typically consist of many simple, neuron-like processing elements called
"units” that interact using weighted connections. Each unit has a "state” or "activity level" that is
determined by the input received from other units in the network. There are many possible variations
within this general framework. One common, simplifying assumption is that the combined effects of the
rest of the network on the ;M unit are mediated by a single scalar quantity, x;. This quantity, which is
called the "total input” of unit j, is a /inear function of the activity levels of the units that provide input to j:
"i=§‘:4yiwji'ej (1

where y, is the state of the i unit, w;, is the weight on the connection from the i to the j unit and
ej is the threshold of the j"‘ unit. The threshold term can be eliminated by giving every unit an extra input
connection whose activity level is fixed at 1. The weight on this special connection is the negative of the

threshold, and it can be learned in just the same way as the other weights. This method of implementing

i
«

\'.‘

- - - - e - - T - o™ A) A . - -
¢ "u':..r".r‘f_ R G NN A A A Ay O

- ORI Vet te s, N
M>m¢:-m:‘ IR A W AT

thresholds will be assumed throughout the paper. An external input vector can be supplied to the network

by clamping the states of some units or by adding an input term, lj to the total input of some units. The
state of a unit is typically defined to be a non-linear function of its total input. For units with discrete
states, this function typically has value 1 if the total input is positive and value 0 (or -1) otherwise. For
units with continuous states one typical non-linear transfer function is the logistic function (shown in figure

1).
1
1+€7%

@

j=

BRRRESNAAR BRI RAAA SR QAP TR AR RN AR NG RNNES

Insert figure 1 about here

SREERRRAEL LRI REIRN AR ONNANANANOENNSARDNS

All the long-term knowledge in a connectionist network is encoded by where the connections are or
by their weights, so learning consists of changing the weights or adding or removing connections. The
short-term knowledge of the network is normally encoded by the states of the units, but some models also
have fast-changing temporary weights or thresholds that can be used to encode temporary contexts or

bindings.

There are two main reasons for investigating connectionist networks. First, these networks
resemble the brain much more closely than conventional computers. Even though there are many
detailed differences between connectionist units and real neurons, a deeper understanding of the
computational properties of connectionist networks may reveal principles that apply to a whole class of
devices of this kind, including the brain. Second, connectionist networks are massively parallel, so any

computations that can be done with these networks can make good use of parailel hardware.

3. Connectionist research issues
There are three main topics of research on connectionist networks: Search, representation, and
leaming. This paper focuses on learning, but a very brief introduction to search and representation is

necessary in order to understand what learning is intended to produce.

AN

AT AT

AR R 1 W Bt

2a

P
2

LOF

o~ me AR

o -
-

g

Rt

) Figure 1: The logistic input-output function defined by equation 2. It is a smoothed version of a step

tunction.

’ : ; % y (Vo 3 Y c P Lo Py - PR AL R EA N N I
AT N o G N e T U A R T D A A O A S A A R AR R R R

o

. o

3.1. Search

The task of interpreting the perceptual input, or constructing a plan, or accessing an item in
memory from a partial description can be viewed as a constraint-satisfaction search in which information
about the current case (i.e. the perceptual input or the partial description) must be combined with
knowledge of the domain to produce a solution that fits both these sources of constraint as well as
possible (Ballard, Hinton, and Sejnowski, 1983). |f each unit represents a piece of a possible solution, the
weights on the connections between units can encode the degree of consistency between various pieces.
in interpreting an image, for example, a unit might stand for a piece of surface at a particular depth and
surface orientation. Knowledge that surfaces usually vary smoothly in depth and orientation can be
encoded by positive weights between units that represent nearby pieces of surface at similar depths and
similar surface orientations, and negative weights between nearby pieces of surface at very diffarent
depths or orientations. The network can perform a search for the most plausible interpretation of the input
by iteratively updating the states of the units until they reach a stable state in which the pieces of the
solution fit well with each other and with the input. Any one constraint can typically be overridden by
combinations of other constraints and this makes the search procedure robust in the presence of noisy

data, noisy hardware, or minor inconsistencies in the knowledge.

There are, of course, many complexities: Under what conditions will the network settle to a stable
solution? Will this solution be the optimal one? How long will it take to settle? What is the precise
relationship between weights and probabilities? These issues are examined in detail by Hummel and
Zucker (1983), Hinton and Sejnowski (1983), Geman and Geman (1984), Hopfield and Tank (1985) and
Marroquin (1985).

3.2. Representation

For tasks like low-level vision, it is usually fairly simple to decide how to use the units to represent
the important features of the task domain. Even so, there are some important choices about whether to
represent a physical quantity (like the depth at a point in the image) by the state of a single continuous
unit, or by the activities in a set of units each of which indicates its confidence that the depth lies within a

certain interval (Ballard, 1986).

The issues become much more complicated when we consider how a complex, articulated

structure like a plan or the meaning of a sentence might be represented in a network of simple units.

Some preliminary work has been done on the representation of inheritance hierarchies and the

representation of frame-like structures in which a whole object is composed of a number of parts each of
which plays a ditferent role within the whole (Minsky, 1977; Hinton, 1981). A recurring issue is the
distinction between local and distributed representations. In a local representation, each concept is
represented by a single unit (Barlow, 1972; Feidman, 1986). In a distributed representation, the kinds of
concepts that we have words for are represented by patterns of activity distributed over many units, and
each unit takes part in many such patterns (Hinton, McClelland and Rumelhart, 1986). Distributed
representations are usually more efficient than local ones in addition to being more damage resistant.
Also, if the distributed representation allows the weights to capture important underlying regularities in the
task domain, it can lead to much better generalization than a local representation (Rumelhart and
McClelland, 1986; Rumelhart, Hinton and Williams, 1986a). However, distributed representations can
make it difficult to represent several different things at the same time and so to use them effectivety for
representing structures that have many parts playing different roles it may be necessary to have a
separate group of units for each role so that the assignment of a filler to a role is represented by a

distributed pattern of activity over a group of “role-specific” units.

Much confusion has been caused by the failure to realize that the words "local” and "distributed”
refer to the relationship between the terms of some descriptive language and a connectionist
implementation. If an entity that is described by a single term in the language is represented by a pattern
of 'activity over many units in the connectionist system, and it each of these units is involved in
representing other entities, then the representation is distributed. But it is always possible to invent a new
descriptive language such that, relative to this language, the very same connectionist system is using

local representations.

3.3. Learning

In a network that uses local representations it is often feasible to set all the weights by hand

because each weight typically corresponds to a meaningful relationship between entities in the domain.
if, however, the network uses distributed representations it may be very hard to program by hand and so
a learmning procedure may be essential. Some learning procedures, like the perceptron convergence
procedure (Rosenblatt, 1962), are only applicable if the desired states of all the units in the network are
already specified. This makes the learning task relatively easy. Other, more recent, learning procedures

operate in networks that contain "hidden” units (Hinton, and Sejnowski, 1986) whose desired states are

4 SR
R AR N ET AT - AR) W Y N IS TSIATA TS ‘-,-_.\ \.__
VAR NN AR N A NN A NN NN A RNV

SNARARANRNARNA R AU UL A -

not specitied (either directly or indirectly) by the input or the desired output of the network. This makes
leaming much harder because the learning procedure must (implicitly) decide what the hidden units
should represent. The learning procedure is therefore constructing new representations and the resuits of
leaming can be viewed as a numericai solution to the problem of whether to use local or distributed

representations.

Connectionist learning procedures can be divided into three broad classes: Supervised procedures
which require a teacher to specify the desired output vector, reinforcement procedures which only require
a single scalar evaluation of the output, and unsupervised procedures which construct internal models
that capture regularities in their input vectors without receiving any additional information. As we shall

see, there are often ways of converting one kind of leaming procedure into another.

4. Associative memories without hidden units

Several simple kinds of connectionist learning have been used extensively for storing knowledge in
simple associative networks which consist of a set of input units that are directly connected to a set of
output units. Since these networks do not contain any hidden units, the difficult problem of deciding what
the hiqden units should represent does not arise. The aim is to store a set of associations between input
vectors and output vectors by modifying the weights on the connections. The representation of each
association is typically distributed over many connections and each connection is involved in storing many
associations. This makes the network robust against minor physical damage and it also means that
weights tend to capture regularities in the set of input-output pairings, so the network tends to generalize

these regularities to new input vectors that it has not been trained on (Anderson and Hinton, 1981).

4.1. Linear assoclators
In a linear associator, the state of an output unit is a linear function of the total input that it receives
from the input units (see Eq. 1). A simple, Hebbian procedure for storing a new association (or "case™) is

to increment each weight, w;, between the i input unit and the ; output unit by

Aw; = 3, 3)

where y; and y; are the activities of an input and an output unit. After a set of associations have
been stored, the weights encode the cross-correlation matrix between the input and output vectors. if the
input vectors are orthogonal and have length 1, the associative memory will exhibit perfect recall. Even

though each weight is involved in storing many different associations, each input vector will produce

P - N e b N T

exactly the correct output vector (Kohonen, 1977).

If the input vectors are not orthogonal, the simple Hebbian storage procedure is not optimal. For a

given network and a given set of associations, it may be impossibie to store all the associations perfectly,

: but we would still like the storage procedure to produce a set of weights that minimizes some sensible
measure of the differences between the desired output vectors and the vectors actually produced by the

* network. This "error measure” can be defined as
E “Z Ojc=4

where y; . is the actual state of output unit j in input-output case ¢, and dj.c is its desired state.
Kohonen (1977) shows that the weight matrix, W, that minimizes this error measure can be expressed

analytically as:
W = BA¥

where B is the matrix whose columns are the desired output vectors and A¥ is the pseudo-inverse
of the matrix A whose columns are the input vectors. A simple way to compute W is to use an iterative
storage procedure that repeatedly sweeps through the whole set of associations and modifies each
weight by a small amount in the direction that reduces the error measure. This is a version of the LMS
leaming procedure described in section 5. The cost of finding an optimal set of weights (in the least
squares sense of optimal) is that storage ceases to be a simple "one-shot" process. To store one new

association it is necessary to sweep through the whole set of associations many times.

4.2. Non-linear associative nets
Willshaw (1981) described an associative net in which both the units and the weights have just two

states: 1 and 0. The weights all start at 0, and associations are stored by setting a weight to 1 if ever its

input and output units are both on in any association (see figure 2). To recall an association, each output
unit must have its threshold dynamically set to be just less than m, the number of active input units. If the
output unit should be on, the m weights coming from the active input units will have been set to 1 during
storage, so the output unit is guaranteed to come on. If the output unit should be off, the probability of
erroneously coming on is given by the probability that all m of the relevant weights will have been set to 1
when storing other associations. Willshaw showed that associative nets can make efficient use of the .

information capacity of the weights. 1f the number of active input units is the log of the total number of

input units, the probability of incorrectly activating an output unit can be made very low even when the

3
l'_li

-j
-
|".

6.

NEATGEN

A AL N N A e e L e

A G A Y O T A PEP I N

.
LY
'
[
¢
*l

WWWW.T&FMFMME! Ln e B Bl AlRe A e Ate AL BN 4

network is storing close to 0.69 of its information theoretic capacity.

g

ERANEROA TR IR N R ER AN AN DR ANOT N

Jneert fiqure 2 about here,

An associative net in which the input units are identical with the output units can be used to
associate vectors with themselves. This allows the network to complete a partially specified input vector.
I the input vector is a very degraded version of one of the stored vectors, it may be necessary to use an
iterative retrieval process. The initial states of the units represent the partially specified vector, and the
states of the units are then updated many times until they settle on one of the stored vectors.
Theoretically, the network could oscillate, but Willshaw (1971) and Anderson and Mozer (1981} showed
that iterative retrieval normally works well. Hopfield (1982) showed that if the units are updated one at a
time the iterative retrieval process can be viewed as a form of gradient descent in an "energy function®.

Hopfield nets store vectors whose components are all +1 or -1 using the simple storage procedure

v, e RSO, e wL bl

described in equation 3. To retrieve a stored vector from a partial description (which is a vector

containing some 0 components), we start the network at the state specified by the partial description and
then repeatedly update the states of units one at a time. The units can be chosen in random order or in
any other order provided each unit is chosen finitely often. Hopfield observed that the behavior of the

network is governed by the global energy function®
1

where s; and s; are the states of two units. Each time a unit updates its state, it adopts the state
that minimizes this energy function because the decision rule used to update a unit is simply the
derivative of the energy function. The unit adopts the state +1 if its "energy-gap" is positive and the state
~1 otherwise, where the energy gap is defined as
AE; = E(s;=-1)— E(s;=+1) = > sw; - 6, (5)
]

So the energy must decrease until the network settles into a local minimum of the energy function.
We can therefora view the retrieval process in the following way: The weights define an "energy
landscape™ over global states of the network and the stored vectors are local minima in this landscape.

The retrieval process consists of moving downhill from a starting point to a nearby local minimum.

3The energy function should not be confused with the error function described earlier. Gradient descent in the energy function is
performed by changing the states of the units, not the weights.

YA Ya """
AR

A A TS
DA AN AT

~ W - - .y ST T TR T T T I PR)
-y . "n . e ™ ..‘.-...‘_:'--.\-._.- u.,-’,- ‘h S > (I I

CR T S N S T I ST e _-'_ - -".‘... K
L i e e T e AT ALY

M N AN N AN AN AT N R KT L I A U U U N UNUY Y (W W Uw % g% 8. a0 Al a® a7 “al ‘Al a8 .} C.% a8 .8 "

P

7a

R

Figure 2: An associative net (Willshaw, 1981). The input vector comes in at the left and the output
vector comes out at the bottom (after thresholding). The solid weights have value 1 and the open
weights have value 0. The network is shown after it has stored the associations 01001 -> 10001, 10100
k.- -> 01100, 00010 -> 00010.

a4 RN Y

WIS . | AR

aRLLLS

4

L4

B o3 T AN AT A K A < e
v . B B 224 . L N [}) A ANy,

e

. - - - L. . . . "n T m
APy 'ﬁl"-."w- g R O R O SR AR O TR
- N B . . .) L) b

UG
AN
L)

mmmmmwavwwnw- SRS A S T 0 BE R e | AT T

if too many vectors are stored, there may be spurious local minima caused by interactions between
the stored vectors. Also, the basins of attraction around the correct minima may be long and narrow
instead of round, so a downhill path from a random starting point may not lead to the nearest local
minimum. These problems can be alleviated by using a process called "unlearning” (Hopfield, Feinstein
and Palmer, 1983; Crick and Mitchison, 1983).

For random n-component vectors, the storage capacity of a Hoplield net is only 1/klog(n) bits per
weight, even though the weights are integers with ¢ +1 different values, where ¢ is the number of cases
stored. This is much worse than Willshaw's associative net. It can be improved by introducing thresholds
{Weisbuch and Fogelman-Soulie, 1985). It can be increased much more by sacrificing the simple one-
shot storage procedure and explicitly training the network on typical noisy retrieval tasks using the

threshold LMS or perceptron convergence procedures described below.

4.3. The deficlencies of associators without hidden units

If the input vectors are orthogonal, or if they are made to be close to orthogonal by using high-
dimensional random vectors (as in a Hopfield net), associators with no hidden units pertorm well using a
simple Hebbian storage procedure. If the set of input vectors satisfy the much weaker condition of being
linearly independent, associators with no hidden units can learn to give the correct outputs provided an
terative leaming procedure is used. Uniortunately, linear independence does not hold for most tasks that
can be characterized as mapping input vectors to output vectors because the number of relevant input
vectors is typically much larger than the number of components in each input vector. The required
mapping typically has a complicated structure that can-only be expressed using multiple layers of hidden
units.# Consider, for example, the task of identifying an object when the input vector is an intensity array
and the output vector has a separate component for each possible name. [f a given type of object can be
either black or white, the intensity of an individual pixel (which is what an input unit encodes) cannot
provide any direct evidence for the presence or absence of an object of that type. So the object cannot
be identified by using weights on direct connections from input to output units. Obviously, it is necessary
to explictly extract relationships among intensity values (such as edges) before trying to identify the
object. Actually, extracting edges is just a small part of the problem. If recognition is to have the

generative capacity to handle novel images of familiar objects the network must somehow encode the

“It is always possible to redefine the units and the connectivity so that multiple layers of simple units become a single layer of
much more complicated units. But this redefinition does not make the problem go away.

......

k-f-l':-f.{-lf-‘.'-

§ systematic effects of variations in lighting and viewpoint, partial occlusion by other objects, and
deformations of the object itself. There is a tremendous gap between these complex regularities and the

regularities that can be captured by an associative net that lacks hidden units.

Y
1.'
o 5. Simple supervised learning procedures
L
W Consider a network that has input units which are directly connected to output units whose states
:.n: - (i.e. activity levels) are a continuous smooth function of their total input. Suppose that we want to train
t
J
::: the network to produce particular "desired" states of the output units for each member of a set of input
‘s
:: vectors. A measure of how poorly the network is performing with its current set of weights is:
=1 2
. E=53 0jc=d;.) ©)
; iz
' where Yie is the actual state of output unit j in input-output case ¢, and dj_c is its desired state.
b
v We can minimize the error measure given in Eq. 6 by starting with any set of weights and
repeatedly changing each weight by an amount proportional to dE/Ow.
(s aw;=—e 2E %)
P i
(A"
In the limit, as € tends to 0 and the number of updates tends to infinity, this learning procedure is
. .
-_, guaranteed to find the set of weights that gives the least mean squared (LMS) error. The value of 3E/aw is
o obtained by differentiating Eq. 6 and Eq. 1.
‘. oF 3E @ dy; :
o —_— = —_— .= .=l = O,—-d) . = .y t))
aw;; ca%.fa)'j dx; ow; cazs:': PV Ay
) . If the output units are linear, the term dyj/dxj is a constant.
~l
I~
2. The LMS leaming procedure has a simple geometric interpretation if we construct a mutti-
. dimensional "weight-space” that has an axis for each weight and one extra axis (called "height") that
-. corresponds to the error measure. For each combination of weights, the network will have a certain error
a3
*', which can be represented by the height of a point in weight space. These points form a surface called
)
o the "error-surface”. For networks with linear output units and no hidden units, the error surface always
L forms a bowl whose horizontal cross-sections are ellipses and whose vertical cross-sections are
o . A .
! parabolas. Since the bowl only has one minimum,3 gradient descent on the error-surface is guaranteed
»
to find it. If the output units have a non-linear but monotonic transfer function, the bow! is deformed but
[P
‘&
¢ 5This minimum may be a whole subspace.
o
o
o
N
3
N .M TR At SIS - . e "N AN S O S AL SRR TS AT
,’- , .‘” ...‘ ‘.‘\ \ \; ; ~ \),x " '\‘- - > NS

10

still only has one minimum, so gradient descent still works. However, it will be very slow at points in
weight-space where the gradient of the transfer function approaches zero for the output units that are in

error.

The "batch” version of the LMS procedure sweeps though all the cases accumulating o£/dw before
changing the weights, and so it is guaranteed to move in the direction of steepest descent. The "on-line”
version, which requires less memory, updates the weights after each input-output case (Widrow and Hoff,
1960)8. This may sometimes increase the total error, E, but by making the weight changes sufficiently
small the total change in the weights after a complete sweep through all the cases can be made to

approximate steepest descent arbitrarily closely.

5.1. An LMS procedure for binary threshold units
Binary threshold units use a step function, so the term dy,/dx; is infinite at the threshold and zero
elsewhere and the LMS procedure must be modified to be applicable o these units. One method is to

redefine the error of an output unit, j, for a given input case to be

0 if the output unit has the right state,

x 2 itthe output unit has the wrong state.

N -

The derivative of the new error measure with respect to X then becomes

0 when the output unit behaves correctly,
&, _
axi.c B

X when the output unit behaves incorrectly

So the "threshold LMS procedure” becomes:

OE*.
Aw.. = —¢ _‘_"_c .y
g ; axj,f: e

%The term "LMS" is usually reserved for the on-line version

".-’(i"- L . x b

[
v
1

¥
. v",,“,., V’f;f " » : y’ 73 ;I AN 'w',\{.'f.v{~fsf¢" J"-.r..f,'sf !

1

5.2. The perceptron convergence procedure

The usual form of the perceptron convergence procedure is related to the on-ling version of the
threshold LMS procedure in the following way: The magnitude of aE*;.C/axj . is ignored and only its sign is
taken into consideration. So the weight changes are:

0 when the output unit behaves correctly,
Bw;;. = +EY;, it the unit is off and should be on,
—€Y;, if the unit is on and should be off.

Because it ignores the magnitude of as';..c/axj . this procedure does not even stochastically
approximate steepest descent in the type of emor function used in LMS procedures. Even with very small
g, it is quite possible for the error to rise after a complete sweep through all the cases. However, each
time the weights are updated, the perceptron convergence procedure is guaranteed to reduce the value

of a different cost measure that is defined soiely in terms of weights.

To picture the LMS procedure we introduced a space with one dimension for each weight and one
extra dimension for the mean squared error in the output vectors. To picture the perceptron convergence
procedure, we do not need the extra dimension for the error. For simplicity we shall consider a network
with only one output unit. Each case corresponds to a constraint hyperplane in weight space. If the
weights are on one side of this hyperplane, the output unit will behave correctly and i théy are on the
other side it will behave incorrectly (see figure 3). To behave correctly for all cases, the weights must lie
on the correct side of all the hyperplanes, so the combinations of weights that give perfect performance

form a convex set. Any set of weights in this set will be called "ideal".

AL 2221222 T2 XTI 2 2222222222 % 27

Insert figure 3 about here

CENOANRRERENRN G QRO R AR R AR R ORI ON

The perceptron convergence procedure considers the constraint planes one at a time, and
whenever the current combination of weights is on the wrong side, it moves it perpendicularly towards the
plane. This reduces the distance between the current combination of weights and any of the ideal
combinations. So provided the weights move by less than twice the distance to the violated constraint
plane, a weight update is guaranteed to reduce the measure

2
2 Wi gctuia™ Wiidea)
]

CSL SRR TN o

IR IR AN

OO N P PO T N U RO TR Oy O T A O T T T U ST U W UV T WU UW U S

e e

I aq

SRR

AT

VOIS

»

o
‘-

g

Figure 3: Some hyperplanes in weight-space. Each plane represents the constraint on the weights

ol o

cause by a particular input-output case. If the weights lie on the correct (unshaded) side of the plane,

the output unit will have the correct state for that case. Provided the weight changes are proportional

to the activities of the input lines, the perceptron convergence procedure moves the weights

PP

~

¥3

perpendicularly towards a violated constraint plane.

L

-
e

A RSP LSO N - A N e T & Wt m 0 S s N TN
AN AN BN A U S W N &8, AR A bt ol R OO0)

R R i G L N Ny
‘o NN Ot el Aaa

-

- -~

s o A~

¢
¢

-

T

-

-
g

]
-

. ; s
-

LS b

S

72

2 a"s 2 an A

T

‘ - LR Dy 5 L PO - -y
N IR E N A N AN N BOICAC A SN R A

. e e B aba e b s b
IR ITA N TERIIPU I S U IPU WU AT W MR T WK T A B’ 8t Bat R’ 3¢ 04t £2® Pat g Bl b g%

12

The perceptron convergence procedure has many nice properties, but it also has some serious
problems. Unlike the threshold LMS procedure, the measure that it is guaranteed to reduce is undefined
when there is no set of weights that will do the job perfectly. Also, there are obvious problems in trying to
generalize to more complex, multilayered nets in which the ideal combinations of weights do not form a
single convex set, because the idea of moving towards the ideal region of weight space breaks down. It
is therefore not surprising that the more sophisticated procedures required for multilayer nets are
generalizations of the LMS procedure rather than the perceptron convergence procedure: They learn by

decreasing a performance error, not a distance in weight-space.

5.3. The deficlencies of simple learning procedures

The major deficiency of both the LMS and perceptron convergence procedures is that most
"interesting” mappings between input and output vectors cannot be captured by any combination of
weights in such simple networks, so the guarantee that the learning procedure will find the best possible
combination of weights is of little value. Consider, for example, a network composed of two input units
and one output unit. There is no way of setting the two weights and one threshold to solve the very
simple task of producing an output of 1 when the input vector is (1, 1) or (0, 0) and an output of 0 when
the input vector is (1, 0) or (0, 1). Minsky and Papert (1969) give a clear analysis of the limitations on
what mappings can be computed by three-layered nets. They focus on the question of what pre-
processing must be done by the units in the intermediate layer to allow a task to be solved. They
generally assume that the pre-processing is fixed, and so they avoid the problem of how to make the units

in the intermediate layer learn useful predicates. So, from the learning perspective, their intermediate
units are not true hidden units.

Another deficiency of the LMS and perceptron leaming procedures is that gradient descent may be
very slow if the elliptical cross-section of the error surface is very elongated so that the surface forms a
long ravine with steep sides and a very low gradient along the ravine. In this case, the gradient at most
points in the space is almost perpendicular to the direction towards the minimum. If the coefficient ¢ in
Eq. 7 is large, there are divergent oscillations across the ravine, and if it is small the progress along the
ravine is very slow. A standard method for speeding the convergence in such cases is recursive least

squares (Widrow and Stearns, 1985). Various other methods have also been suggested (Amari, 1967;
Parker, 1987; Plaut and Hinton, 1987).

NN

.- w, v et
o OGN

WA

et a™ TR A AR R LR
\-'J'J'_f\-’. R

-
- - SRS

S W LN

13

We now consider learning in more complex networks that contain hidden units. The next five
sections describe a variety of supervised, unsupervised, and reinforcement leaming procedures for these

nets.

6. Back-propagation: A muitilayer LMS procedure

The "back-propagation” learning procedure (Rumethart, Hinton and Williams, 1986a, 1986b) is a
generalization of the LMS procedure that works for networks which have layers of hidden units between
the input and output units. These multilayer networks can compute much more complicated functions
than networks that lack hidden units, but the learning is generally much slower because it must explore
the space of possible ways of using the hidden units. There are now many examples in which back-
propagation constructs interesting internal representations in the hidden units, and these representations
allow the network to generalize in sensible ways. Variants of the procedure were discovered

independently by Le Cun (1985) and Parker (1985).

In a multilayer network it is possible, using Ed. 8, to compute as/awj,. for all the weights in the
network provided we can compute aE/ayj for all the units that have modifiable incoming weights. [n a
system that has no hidden units, this is easy because the.only relevant units are the output units, and tor
them as/ayj is found by differentiating the error function in Eq. 6. But for hidden units, aE/ayj is harder to
compute. The central idea of back-propagation is that these derivatives can be computed efficiently by
starting with the output layer and working backwards through the layers. For each input-output case, c,
we first use a forward pass, starting at the input units, to compute the activity levels of ail the units in the
network. Then we use a backward pass, starting at the output units, to compute aE/ay, for all the hidden
units. For a hidden unit, j, in layer J the only way it can affect the error is via its effects on the units, k, in
the next layer, K (assuming units in one layer only send their outputs to units in the layer above). So we

have

3E _ Y E M % < E W

g —————

} —_— . W, ®
o Ty dn Ty, dx Y

where the index ¢ has been suppressed for clarity. So if dE/dy, is already known for all units in
layer K, it is easy to compute the same quantity for units in layer J. Notice that computation performed
during the backward pass is very similar in form to the computation performed during the forward pass
(though it prcpagates error derivatives instead of activity levels, and it is entirely linear in the error

derivatives).

TP . n e Ve
*?)f‘f:'.r:'}:‘}.'a}f.'(. U TE RS §

6.1. The shape of the error surface

In networks without hidden units, the error surface only has one minimum (provided the units use
smooth monotonic transfer functions). With hidden units, the error surface may coniain many local
minima, so it is possible that steepest descent in weight space will get stuck at poor local minima. In
practice, this does not seem to be a serious problem. Back-propagation has been tried for a wide variety
of tasks and poor local minima are rarely encountered, provided the network contains a few more units
and connections than are required for the task. One reason for this is that there are typically a very large
number of qualitatively different perfect solutions, so we avoid the typical combinatorial optimization task

in which one minimum is slightly better than a large number of other, widely separated minima.

in practice, the most serious problem is the speed of convergence, not the presence of non-global

minima. This is discussed further in section 12.3.

6.2. Two examples of back-propagation

Back-propagation is an effective learning technique when the mapping from input vectors to output
vectors contains both regularities and exceptions. For example, in mapping from a string of English
letters to a string of English phonemes there are many regularities but there are also exceptions such as
the word "women®. Sejnowski and Rosenberg (1987) have shown that a network with one ‘hidden layer
can be trained to pronounce letters surprisingly well. The input layer encodes the identity of the letter to
be pronounced using a different unit for each possible letter, and also the identities of the three previous
letters and three following letters in the text (spaces and punctuation are treated as special kinds of
letters). The output layer encodes a phoneme using 21 articulatory features and 5 features for stress and
syllable boundaries. There are 80 hidden units each of which is connected to all the input and output
units. After extensive training, the network generalizes well to new examples which demonstrates that it

captures the regularities of the mapping.

A network with three hidden layers was used by Hinton (1986) to learn the family relationships
between 24 different people. The input vector specified a person and a relationship and the network was
trained to produce the related person as output. The network was trained on 100 of the 104 possible
relationships and then tested on the remaining 4. It generalized correctly because during the training it

leamed to represent each of the people in terms of important features such as age, nationality, and the

branch of the family tree that they belonged to. Using these underlying features, much of the information

Sa%ha hetig Tl e it R ST By H

15

about family relationships can be captured by a fairly small number of "micro-inferences” between
teatures. For example, the father of a middle-aged person is an old person, and the father of an italian
person is an italian person. Figures 4 to 6 show the family trees, the architecture of the network and the

"receptive fields" of some of the internal units.

AREERDAAL NS LR R AR AR E NI RNANNOIY

Insert figures 4, 5, 6 about here

ARRRNE RSV E RN EONRARAPSAIRN SRR SRS

The input and output encodings used a different unit to represent each person and relationship, so
all pairs of people are equally similar in the input and output encoding: The encodings do not give any
clues about what the important features are. The learning procedure could only discover these features
by searching for a set of features that made it easy to express the associations. Once these features
were discovered, the internal representation of each person was a distributed pattern of activity and
similar people were represented by similar patterns. Thus the network constructs its own intemal
similarity metric. This is a significant advance over simulations in which good generalization is achieved

because the experimenter chooses representations that already have an appropriate similarity metric.

6.3. Back-propagation as a maximum likelihood procedure

If we interpret each output vector as a specification of a conditional probability distribution over a
set of output vectors given an input vector, we can interpret the back-propagation learning procedure as a
method of finding weights that maximize the likelihood of generating the desired conditional probability

distributions. Two examples of this kind of interpretation will be described.

Suppose we only attach meaning to binary output vectors and we treat a real-valued output vector

as a way of specifying a probability distribution over binary vectors.” We imagine that a real-valued output

vector is stochastically converted into a binary vector by treating the real-values as the probabilities that -
‘¢
individual components have value 1, and assuming independence between components. For simplicity, E‘;
W
we can assume that the desired vectors used during training are binary vectors, but this is not necessary. #
- L]
Given a set of training cases, it can be shown that the likelihood of producing exactly the desired vectors !!
t‘.‘1
is maximized when we minimize the cross-entropy, C, between the desired and actual conditional ';~'_]
probability distributions: _‘
]
C=Y d; log,0;)+ (1-d;) logy(1 -y,) N
~ g
.’-*
e
7Both the exampiles of back-propagaton descnbed above fit this interpretation. e
-“.‘l
»
A
2
Y

B O e TRT T N A ST N AR PPN P

WX o]
""“‘i.- :" Y] ." LA

o,
R

Ny DA A R W A I X N S
’ “‘ 2T \\ ,-.\.. .

54
Christopher = Penelope Andrew = Christine
Margaret = Arthur Victoria = James Jennifer = Charles
Colin Charlotte
Roberto = Maria Pierro = Francesca
Gina = Emilio Lucia = Marco Angela = Tomaso
Alfonso Sophia

Figure 4: Two isomorphic family trees.

'y . EyT i vy W

s ":.'."'-‘Jﬁ'. NS A '"n.,{":‘-';'-\."-:'.N-"-."~;"-:"'\"

L .'\1"._"..(
»

-
'n
A

ARG ORI ™ R T O T R W WP PO I TP OO e AN ¢
PN LY [N M - . - &

PR E Y -

\J
‘
5
.
3
.« » . . ‘
Figure 5: The activity levels in a five layer network after it has learned. The bottom layer has 24 input i
units on the left for representing person 1 and 12 units on the right for representing the relationship. _
The white squares inside these two groups show the activity levels of the units. There is one active \ \
Y\
unit in the first group (representing Colin) and one in the second group (representing has-aunt). Each D!

of the two groups of input units is totally connected to its own group of € units in the second layer.
These two groups of 6 must learn to encode the input terms as distributed patterns of activity. The)
second layer is totally connected to the central layer of 12 units, and this layer is connected to the
penultimate layer of 6 units. The activity in the penultimate layer must activate the correct output

units, each of which stands for a particular person 2. In this case, there are two correct answers

(marked by black dots) because Colin has two aunts. Both the input and output units are laid out

spatially with the English people in one row and the isomorphic Italians immediately below.

e e g

A Pl

P AR 1

cele)

P

.] " AT SRR N - ORI R '."..’:(;.{.".‘;";'_"" UL RN
M‘i‘m"‘hﬁ*g ".4" \.A‘.A,A‘\A..L.l\ . o/ 5

15¢

Christopher
Yictoria
Margaret
Charlotte

| Charlotte
Christine

g
§

4
s 2
L) 3

Figure 6: The weights from the 24 input units that represent people to the 6 units in the second layer
that learn distributed representations of people. White rectangles stand for excitatbry weights, olack
for inhibitory weights, and the area of the rectangle encodes the magnitude of the weight. The
weights from the 12 English people are in the top row of each unit. 'Beneath each of these weights is
the weight from the isomorphic ltalian. During the learning, each weight was given a tendency to

decay towards zero. This tendency is balanced by the error-gradient, so the final magnitude of a

weight indicates how useful it is in reducing the error.

B T N N OIS . T A Sy
N30 AT AT NS AR A TR AT AT W AT R B N A AT

16

where dj . is the desired probability of output unit j in case ¢ and Yie is its actual probability.

So, under this interpretion of the output vectors, we should use the cross-entropy function rather
than the squared difference as our cost measure. In practice, this helps to avoid a problem caused by
output units which are firmly off when they should be on (or vice versa). These units have a very small
value of dy/dx so they need a large value of 0E/y in order to change their incoming weights by a
reasonable amount. When an output unit that should have an activity level of 1 changes from a level of
.0001 to a level of .001, the squared difference from 1 only changes slightly, but the cross-entropy

decreases a lot.

This way of interpreting back-propagation raises the issue of whether, under some other
interpretation of the output vectors, the squared error might not be the correct measure tor performing
maximum likelihood estimation. !n fact, Richard Golden (1987) has shown that minimizing the squared
error is equivalent to maximum likelihood estimation if both the actual and the desired output vectors are
treated as the centers of gaussian probability density functions over the space of all real vectors. So the

"correct” choice of cost function depends on the way the output vectors are most natiirally interpreted.

6.4. Iterative back-propagation

Rumeilhart, Hinton, and Williams (1986a) show how the back-propagation procedure can be applied
to iterative networks in which there are no limitations on the connectivity A network in which the states of
the units at time t determine the states of the units at time t+1 is equivalent to a layered net which has one
layer for each time slice. Each weight in the iterative network is implemented by a whole set of identical
weights in the corresponding layered net, one for each time slice. In the iterative net, the error is typically
the ditference between the actual and desired final states of the network, and to compute the error
derivatives it is necessary to back-propagate through time, so the history of states of each unit must be
stored. Each weight will have many different error derivatives, one for each time step, and the sum of all

these derivatives is used to determine the weight change.

RREANAEIPIRE RN ARG R AN RD

Insent tigure 7 about here

ALl 222 SRR S 2222220 2)
Back-propagation in iterative nets can be used to train a network to generate sequences or to
recognize sequences or to complete sequences. Examples are given in Rumelhart, Hinton and Williams

(1986b). Alternatively, it can be used to store a set of patterns by constructing a point attractor for each

.t
-

RIRTOTA

AN T

It a

L

« X 4

A set of
corresponding
weights

T LA

A
3
L3

%

" -

P &t Fe L,

Bt

Figure 7: On the left is a simple iterative network that is run synchronously for three iterations. On

the right is the equivalent layered network.

AT

» 3 P o

(Y

Myt ey aman
L ALY

h e AT e "R s T A e A . . .t .- ... e S p e e et cuw »
Wl x RN e .
B et S S T S S T Ve vy Ve e e T TN T

‘.‘ '.‘ ‘-' a -"-."‘:
R N S A W) N

A A A "gh KVL“\".N17I."‘4K‘T Lo U i VAR S P

17

pattern. Uniike the simple storage procedure used in a Hopfield net, or the more sophisticated storage
procedure used in a Boltzmann machine (see section 7), back-propagation takes into account the path
used to reach a point attractor. So it will not construct attractors that cannot be reached from the normal

range of. starting points on which it is trained.8

There is some hope that an iterative net can be trained to recognize phonemes. The speech, in a
form such as spectral coefficients, would be presented to the network one time-frame at a time, and the
phoneme identities would be output after a short delay. Back-propagation of the errors would cause the
hidden units to extract features that were helpful for recognition, and it would also cause some hidden
units to “remember” relevant aspects of the earlier input. These hidden units wouid then form an intemnal
context which would aid recognition of the next phoneme.® In principle, different hidden units could
represent many different aspects of the earlier input. This would overcome a major limitation of the
hidden markov model approach to speech recognition (Bahl, Jelinek, and Mercer, 1983). Hidden markov
models are stochastic finite state automata, and the only internal context available to a finite state
automaton is the identity of the current state. To represent 20 bits of information about the past a hidden
markov model would need 220 states, and the corresponding recognizer would need a state with up to 22°
components. An iterative back-propagation net which had learned to deploy its ﬁidden units to good
effect might be able to manage with very much less than 22° units by exploiting pattems in the useful

states of the recognition process.

Kevin Lang (1987) has shown that an iterative back-propagation net compares tfavorably with
hidden markov models at the task of distinguishing the words "bee”, "dee”, "ee", and "vee" spoken by

many different male speakers in a noisy environment.

6.5. Self-supervised back-propagation
One drawback of the standard form of back-propagation is that it requires an external supervisor to

specify the desired states of the output units. It can be converted into an unsupervised procedure by

using the input itself to do the supervision, using a multilayer "encoder” network (Ackley et. al., 1985) in

O

.
A A A

8a back-propagation net that uses asymmetric connections {and synchronous updating) is not guaranteed to settle to a single
stable state. To encourage it to construct a point attractor, rather than a limit cycle, the point attractor can be made the desired state
for the last few iterations.

91t is also possible to use connections that have various different time delays so that units in higher layers can directly “observe”
the time-varying behavior of units in lower layers.

Y 2R NI ELPFLT N/

Py

18

!
which the desired output vector is identical with the input vector. The network must learn to compute an ;
approximation to the identity mapping for all the input vectors in its training set, and if the middle layer of Al
the network contains fewer units than the input layer, the learning procedure must construct a compact, ;
invertible code for each input vector. This code can then be used as the input to later stages of .)
processing. :

The use of self-supervised back-propagation to construct compact codes resembles the use of <
principal components analysis to perform dimensionality reduction, but it has the advantage that it allows :
the code to be a non-linear transform of the input vector. This form of back-propagation has been used) :
successfully to compress images (Cottrell, personal communication, 1986) and to compress speech
waves (Elman & Zipser, 1987). A variation of it has been used to extract the underlying degrees of E
tfreedom of simple shapes (Saund, 1986). ;

g

It is also possible to use back-propagation to predict one part of the perceptual input from other N
parts. For example, to predict one patch of an image from neighboring patches it is probably helpful to j‘_
use the hidden units to explicitly extract edges. In domains with sequential structure, one portion of a p
sequence can be used as input and the next term in the sequence can be the desired output. This forces -
the network to extract features that are good predictors. If this is applied to the speech wave, the states N,
of the hidden units will form a non-linear predictive code. It is not yet known whether such codes are :
more helpful for speech recognition than linear predictive coefficients. E

A different variation of self-supervised back-propagation is to insist that all or part of the code in the
middle layer change as slowly as possible with time. This can be done by making the desired state of :
each of the middle units be the state it actually adopted for the previous input vector. This forces the '
network to use similar codes for input vectors that occur at neighboring times, which is a sensible "
principle if the input vectors are generated by a process whose underlying parameters change more ',:
slowly than the input vectors themselves. E 1

. 6.6. A reinforcement version of back-propagation

David Rumelhart has shown that back-propagation can be extended to cases in which the desired :
output vector is unknown, but some transformed "image" of it is known. For example, in trying to imitate a :
sound, a network might produce an output vector which specifies how to move the speech articulators. =
Suppose that the network does not receive any direct information about what it should do with its :

A

s R Y

™ :Qt-}r.k-\&{;& y ‘ ' i Yo'y N A AR RS Ay

L% I 8 A B Al Ak A A G0 b Auk Sah fak

19

y articulators but it does "know" the desired sound and the actual sound, which is the transformed "image”
of the output vector. Rumelhart uses an additional network (which he calls a mental model) that first

leams to map from output vectors to their images. Once this mapping has been learned, back-

propagation through the mental model can convert error derivatives for the "images" into error derivatives

for the output vectors of the basic network.

Munro (1987) has shown that this idea can be applied even when the image of an output vector is
simply a single scalar value -- the reinforcement. First, the mental model learns to predict expected
reinforcement from the combination of the input vector and the output vector. Then the derivative of the
expected reinforcement can be back-propagated through the mental model to get the reinforcement

derivatives for each component of the output vector of the basic network.

6.7. The deficlencies of back-propagation

Despite its impressive performance on relatively small problems, and its promise as a widely
applicable mechanism for extracting the underlying structure of a domain, back-propagation is
inadequate, in its current form, for larger tasks because the learning time scales poorly. Empirically, the
learning time on a serial machine is very approximately order(N3) where N is the number of weights in the
network. The time for one forward and one backward pass is order(N). The number of training examples
is typically order(N), assuming the amount of information per output vector is held constant and enough
training cases are used to strain the storage capacity of the network (which is about 2 bits per weight).
The number of times the weights must be updated is also approximately order(N). This is an empirical
observation and depends on the nature of the task.'® On a parallel machine that used a separate
processor for each connection, the time would be reduced to approximately order(N2). Back-propagation
can probably be improved by using the gradient information in more sophisticated ways, but much bigger

improvements are likely to resuit from making better use of modularity (see section 12.3).

As a biological model, back-propagation is implausible. There is no evidence that synapses can be
used in the reverse direction, or that neurons can propagate error derivatives backwards (using a linear
transfer function) as well as propagating activity levels forwards using a non-linear transfer function. One

approach is to try to back-propagate the derivatives using separate circuitry that /eamns to have the same

'%Tesauro (1987) reports a case in which the number of weight updates is roughly proportional to the number of training cases (it
is actually a 4/3 power law).

|
|

RN e o R S S T ST 9 T

20

weights as the forward circuitry (Parker, 1985). A second approach, which seems to be feasible for
self-supervised back-propagation, is to use a method called “recirculation” that approximates gradient
descent and is much more biologically plausible (Hinton and McClelland and Goodhill, 1987). At present,
back-propagation should be treated as a mechanism for demonstrating the kind of learning that can be

done using gradient descent, without implying that the brain does gradient descent in the same way.

7. Boltzmann machines

A Boltzmann machine (Ackley, Hinton, and Sejnowski, 1985; Hinton and Sejnowski, 1986) is a
generalization of a Hopfield net (see section 4.2) in which the units update their states according to a
stochastic decision rule. The units have states of 1 or 0, and the probability that unit j adopts the state 1

is given by

1

e (0

where AE;=x; is the total input received by the j"‘ unit and T is the “temperature”. it can be shown
that if this rule is applied repeatedly to the units, the network will reach “thermal equilibrium®. At thermal
equilibrium the units still change state, but the probability of finding the network in any global state
remains constant and obeys a Boltzmann distribution in which the probability ratio of any two global states
depends solely on their energy difference.
2 = ~(E,-E)T
Pp ¢

At high temperature, the network reaches equilibrium rapidly but low energy states are not much
more probable than high energy states. At low temperature the network approaches equilibrium more
slowly, but low energy states are much more probable than high energy states. The fastest way to
approach low-temperature equilibrium is generally to start at a high temperature and to gradually reduce
the temperature. This is called "simulated annealing” (Kirkpatrick, Gelatt and Vecchi, 1983). Simulated
annealing allows Boltzmann machines to find low energy states with high probability. It some units are
clamped to represent an input vector, and if the weights in the network represent the constraints of the
task domain, the network can settle on a very plausible output vector given the current weights and the

current input vector.

For complex tasks there is generally no way of expressing the constraints by using weights on
pairwise connections between the input and output units. It is necessary to use hidden units that

represent higher-order features of the domain. This creates a problem: Given a limited number of hidden

,‘-‘..-(;’.‘ ._; -':):-F“,- "J"f,'f AT >

-’;-*:('- ‘4.

MABNEBTRIENEANPAANEN RSN E

P EL oo e 3

s

[N B

L

21

units, what higher-order features should they represent in order to approximate the required input-output
mapping as closely as possible? The beauty of Boltzmann machines is that the simplicity of the
Boltzmann distribution leads to a very simple learning procedure which adjusts the weights so as to use

the hidden units in an optimal way.

The network is “shown” the mapping that it is required to perform by clamping an input vector on
the input units and clamping the required output vector on the output units. If there are several possible
output vectors for a given input vector, each of the possibilities is clamped on the output units with the
appropriate probability. The network is then annealed untit it approaches thermal equilibrium at a
temperature of 1. It then runs for a fixed time at equilibrium and each connection measures the fraction ot
the time during which both the units it connects are active. This is repeated for all the various input-output
pairs so that each connection can measure <ss; >*, the expected probability, averaged over all cases, that
unit i and unit j are simultaneously active at thermal equilibrium when the input and output vectors are

both clamped.

The network must also be run in just the same way but without clamping the output units. Again, it
reaches thermal equilibrium with each input vector clamped and then runs for a fixed additional time to
measure <ss;>", the expected probability that both units are active at thermal equilibrium when the output
vector is not clamped. Each weight is then updated by an amount proportional to the difference between

these two quantities

- +_ -
Aw‘.j-s(q‘sf <S5)

It has been shown (Ackley, Hinton, and Sejnowski, 1985) that if € is sufficiently small this performs
gradient descent in an information thecretic measure, G, of the difference between the behavior of the

output units when they are clamped and their behavior when they are not clamped.

G=Y PU&O0pin—L 2 P01y
P=(0gl1y)

where /, is a state vector over the input units, Og is a state vector over the output units, P* is a
probability measured when both the input and output units are clamped, and P~ is a probability measured

at thermal equilibrium when only the input units are clamped.

G is called the asymmetric divergence or Kullback information, and its gradient has the same form

for connections between input and hidden units, connections between pairs of hidden units, connections

o g T, N,
W Yy

22

between hidden and output units, and connections between pairs of output units. G can be viewed as the
sum of two terms: The entropy of the "desired” probability distribution that is clamped on the output units
and the cross-entropy between this desired probability distribution and the "actual” distribution exhibited
by the output units when they are not clamped. The first term cannot be changed by altering the weights,
$0 minimizing G is equivalent to minimizing the cross-entropy, which means that Boltzmann machines use

the same cost function as one form of back-propagation (see section 6.3).

A special case of the learning procedure is when there are no input units. 1t can then be viewed as
an unsupervised leaming procedure which learns to model a probability distribution that is specified by
clamping vectors on the output units with the appropriate probabilities. The advantage of modeling a
distribution in this way is that the network can then perform completion. When a partial vector is clamped
over a subset of the output units, the network produces completions on the remaining output units. If the
network has learned the training distribution perfectly, its probability of producing each completion is
guaranteed to match the environmental conditional probability of this completion given the clamped partial

vector.

The leaming procedure can easily be generalized to networks where each term in the energy

function is the product of a weight, w _and an arbitrary function, f(i,j, &, ...}, of the states of a subset of

i k,..
the units. The network must be run so that it achieves a Boltzmann distribution in the energy function.
The generalized learming procedure is simply to change the weight by an amount proportional to the

difference between <fUi, ;. k,..)>* and <fli,j k, ..)>".

The learning procedure using simple pairwise connections has been shown to produce appropriate
representations in the hidden units (Ackley, Hinton and Sejnowski, 1985) and it has also been used for
speech recognition {Prager, Harrison, and Fallside, 1986). However, it is considerably slower than back-
propagation because of the time required to reach equilibrium in large networks. Also, the process of
estimating the gradient introduces several practical problems. If the network does not reach equilibrium
the estimated gradient has a systematic error, and if too few samples are taken to estimate <SS, >* and
<s;s,>” accurately the estimated gradient will be extremely noisy because it is the ditference of two noisy
estimates. Even when the noise in the estimate of the difference has zero mean, its varniance is a function
of <5;5,>* and <s;5,>". When these quantities are near zero or one, their estimates will have much lower
variance than when they are near 0.5. This non-unifcrmity in the variance gives the hidden units a

surprisingly strong tendency to develop weights that cause them to be on all the time or off all the time. A

N T T AT A T A AT L N Y
- A . - Al - » . L] - A

>

s a aat st 3a tht A asalh ata otk ath aid i 4t 28 2 LS At Lg s 0 et tai gt it ia e bt Y QASLIADARA Rt ad el Al At L T D fa iy ba b Dol A kAl Kokl

23

tamiliar version ot the same effect can be seen if sand is sprinkled on a vibrating sheet of tin. Nearly all
the sand clusters at the points that vibrate the least, even though there is no bias in the direction of

motion of an individual grain of sand.

One interesting feature of the Boltzmann machine is that it is relatively easy to put it directly onto a
chip which has dedicated hardware for each connection and performs the annealing extremely rapidly
using analog circuitry that computes the energy gap of a unit by simply allowing the incoming charge to
add itself up, and makes stochastic decisions by using physical noise. Alspector and Allen (1987) have
designed a chip which will run about 1 million times as fast as a simulation on a VAX, and they intend to
fabricate it. Such chips may make it possible to apply connectionist learning procedures to practical
problems, especially if they are used in conjunction with modular approaches that allow the learning time

to scale better with the size of the task.

7.1. Maximizing reinforcement and entropy In a Boltzmann machine

The Boltzmann machine learning procedure is based on the simplicity of the expression for the
derivative of the asymmetric divergence between the conditional probability distribution exhibited by the
output units of a Boltzrmann machine and a desired conditional probability distribution. The derivatives of
certain other measures are also very simple if the network is allowed to reach thermal equilibrium. The

entropy of the states of the machine is given by
H=-Y P, inP,
a

where P, is the probability of a global configuration, and H is measured in units of logse bits. Its

derivative is
oH _ 1
W = T(<ES‘-SJ>—<E><SiSj>)
if
So if each weight has access to the global energy, £, it is easy to manipulate the entropy. (11)

It is also easy to perform gradient ascent in expected reinforcement if the network is given a global
reinforcement signal, R, that depends on its state. The derivative of the expected reinforcement with

respect to each weight is

aR 1
— = =(<Rs;5>—-<R><s5,5>)
w, T Y o

A recurrent issue in reinforcement learning procedures is how to trade-off short-term optimization of(12)

24

expected reinforcement against the diversity required to discover actions that have a higher reinforcement
than the network’s current estimate. If we use entropy as @ measure of diversity, and we assume that the
system tries to optimize some linear combination of the expected reinforcement and the entropy of its
actions, it can be shown that its optimal strategy is to pick actions according to a Boltzmann distribution,
where the expected reinforcement of a state is the analog of negative energy and the parameter that
determines the relative importance of expected reinforcement and diversity is the analog of temperature.
This result follows from the fact that the Boltzmann distribution is the one which maximizes entropy for a

given expected energy.

This suggests a learning procedure in which the system represents the expected value of an action
by its negative energy, and picks actions bv ailowing a Boltzmann machine to reach thermal equilibrium.
If the weights are updated using equations Eq. 11 and Eq. 12 the negative energies of states will tend to
become proportional to their expectecs reinforcements, since this is the way to make the derivative of H
balance the derivative of R. Once the system has leamned to represent the reinforcements correctly,
variations in the temperature can be used to make it more or less conservative in its choice of actions
whilst always making the optimal trade-off between diversity and expected reinforcement. Unfortunately,
this learning procedure does not make use of the most important property of Boltzmann machines which
is their ability to compute the quantity <s5;5> given some specified state of the output units. Also, it is
much harder to compute the derivative of the entropy if we are only interested in the entropy of the stata

vectors over the output units.

8. Maximizing mutual information: A semi-supervised learning procedure
Supervised learning procedures usually confound two different kinds of information: Information
about which of several possible distributions the current input vector came from (i.e. its category), and
information about the "desired” states that certain units ought to adopt (i.e the desired representation of
that category in the output units). One "semi-supervised” method of training a hidden unit is to provide it

with information about what category the input vector came from, but to refrain from specifying the state

that it ought to adopt. Instead, its incoming weights are modified so as to maximize the information that
the state of the hidden unit provides about the category of the input vector. The derivative of this mutual
information is relatively easy to compute and so it can be maximized by gradient ascent (Pearimutter and
Hinton, 1986). For difficult discriminations that cannot be performed in a single step this is a good

heuristic for producing encodings of the input vector that allow the discrimination to be made more easily.

: - y . LS S SR
..... K - TR AT AT AT N AR N -'\J'\-.'\#\-'\-'\-' et

agycar TP L R -.--,-..-',-..-._-._.-.-'.."
f."n{‘\'.’.“‘h’.’l‘ki\’.h.h‘:.!.h\ L S ;l.‘!;;&...'_‘.&-‘ﬁ; -

B I R R T T N T S PR VW DV U T DT O T R DR T WOV IR TV RN T R VIR M A e e e e

25

Figure 8 shows an example of a difficutt two-way discrimination and illustrates the kinds of discriminant

function that maximize the information provided by the state of the hidden unit.

CENNDROORRECRE QOO RAPNOORINSOOS

Jnser figure 8 about nere.
| If each hidden unit within a layer independently maximizes the mutual information between its state
and the category of the input vector, many units are likely to discover similar, highly-correlated features.
One way to force the hidden units to diversity is to make each hidden unit receive its inputs from a
difterent subset of the units in the layer below. A second method is to ignore cases in which the input
vector is correctly classified by the output units and to maximize the mutual information between the state

of the hidden unit and the category of the input given that the input is incorrectly classified.!!

if the two input distributions that must be discriminated consist of examples taken from some
structured domain and examples generated at random (but with the same first-order statistics as the
structured domain), this semi-supervised procedure will discover higher-order features that characterize
the structured domain and so it can be made to act like the type of unsupervised learning procedure

described in section 9.

9. Unsupervised Hebbian learning

The central idea of unsupervised Hebbian learning is that an individual unit can develop selectivity
to an “important™ subset of its ensembie of input vectors by using a simple weight modification procedure
that depends on the correlation of pre-synaptic and post-synaptic activity. Typical examples of this kind of
leaming are described by Cooper, Liberman and Oja (1979) and by Bienenstock, Cooper, and Munro
(1982). A criticism of early versions of this approach, from a computational point of view, was that the
researchers often postulated a simple synaptic modification rule and then explored its consequences
rather than rigorously specifying the computational goal and then deriving the appropriate synaptic
modification rute. However, an important recent development unifies these two approaches by showing
that a relatively simple Hebbian rule can be viewed as the gradient of an interesting function. The

function can therefore be viewed as a specification of what the learning is trying to achieve.

""This method of weghting the statistics by some measure of the overall error or importance of a case can often be used to allow
global measures of the performance of the whole network to influence local. unsupervised leaming procedures

. N P T e T LI I P '-"J' -..;-.’ R .
I AN N e T A AC RN S A Ut PSR Y

Lra
+ - 4+~ +
+p + - -
+ _ + +
-+ - +
- + -
+ -
- - +
+ +
+ -
(«)
+
+ +
-+
+

Figure 8: (a) There is high mutual information between the state of a binary threshold unit that uses
the hyperplane shown and the distribution (+ or-) that the input vector came from. (b) The
probability, given that the unit is on, that the input came from the " + " distribution is not as high using
the diagonal hyperplane. However, the unit is on more often. Other things being equal, a unit

conveys most mutuai information if it is on haif the time.

¢ PO LN, ¢ .

v, v, ¥ Ny Sy~ LN VP o " " V. VgL g, “a T T M N T T P T AT e AT e
TN TR NN AN N T T I I A A e

o q€_W_ ¥
-

L oLl

k.'""'.

Ayt _._..’

NS

(= AR VA Y e T

AL

>\

AN

......

9.1. A recent development of unsupervised Hebbian learning

in a recent series ot papers Linsker has shown that with proper normalization of the weight
changes, an unsupervised Hebbian learning procedure in which the weight change depends on the
co relation of pre-synaptic and post-synaptic activity can produce a surprising number of the known
properties of the receptive fields of neurons in visual cortex, including center-surround fields (Linsker,
1986a) orientation-tuned fields (Linsker, 1986b) and orientation columns (Linsker, 1986¢). The procedure
operates in a multilayer network in which there is innate spatial structure so that the inputs to a unit in one
layer tend to come from nearby locations in the layer below. Linsker demonstrates that the emergence of
biologically suggestive receptive fields depends on the relative values of a few generic parameters. He
also shows that for each unit, the leaming procedure is performing gradient ascent in a measure whose

main term is the ensemble average (across all the various patterns of activity in the layer below) of:
ZW‘-S" WJ Sj
y
where w; and w; are the weights on the i and j™ input lines of a unit and 5; and s; are the activities

on those input lines.

It is not initially obvious why maximizing the pairwise covariances of the weighted activities

produces receptive fields that are useful for visual information processing. Linsker does not discuss this
question in his original three papers. However, he has now shown (Linsker, 1987) that the learning
procedure maximizes the variance in the activity of the post-synaptic unit subject to a “"resource”
constraint on overall synaptic strength. Since Linsker's units are linear, maximizing the post-synaptic
variance is equivalent to extracting the first component in a principal components analysis. This
component is the one that would minimize the sum-squared reconstruction error if we tried to reconstruct
the activity vector of the presynaptic units from the activity level of the post-synaptic unit. Thus we can
view Linsker's learning procedure as a way of ensuring that the activity of a unit conveys as much
information as possible about its pre-synaptic input vector. A similar analysis can be applied to

competitive learning (see section 10).

10. Competitive learning
Competitive learning is an unsupervised procedure that divides a set of input vectors into a number
of disjoint clusters in such a way that the input vectors within each cluster are all similar to one another. It

is called competitive learning because there is a set of hidden units which compete with one another to

L w
N Y

'y

- .
'} » [y o - ® .. - " . .
LA A A R N A PO A A A A T T T o

. W N ™ e

b p0a’2% 1% 07 2 ' ' D AAIRE BB Sab W B8 L o e ol

27

become active. There are many variations of the same basic idea, and only the simplest version is
described here. When an input vector is presented to the network, the hidden unit which receives the
greatest total input wins the competition and turns on with an activity level of 1. All the other hidden units
turn off. The winning unit then adds a small fraction of the current input vector to its weight vector. So, in
future, it will receive even more total input from this input vector. To prevent the same hidden unit from
being the most active in all cases, it is necessary 10 impose a constraint on each weight vector that keeps
the sum of the weights (or the sum of their squares) constant. So when a hidden unit becomes more

sensitive to one input vector it becomes less sensitive to other input vectors.

Rumelhart and Zipser (1985) present a simple geometrical model of competitive learning. If each
input vector has three components and is of unit length it can be represented by a point on the surface of
the unit sphere. If the weight vectors of the hidden units are also constrained to be of unit length, they too
can be represented by points on the unit sphere as shown in figure 9. The learning procedure is
equivalent to finding the weight vector that is closest to the current input vector, and moving it closer still
by an amount that is proportional to the distance. If the weight changes are sufficiently small, this process

will stabilize when each weight vector is at the center of gravity of a cluster of input vectors.

PARB RS RO ANAC AR INN ARG N A ANty

Insert tigure 9 about here
We can think of the network as performing the following task: Represent the current input vector, s,
, as accurately as possible by using a single active hidden unit. The representation is simply the weight
vector, w_, of the hidden unit which is active in case c. If the weight changes are sufficiently small, this
version of competitive learning performs steepest descent in a measure of the mean squared inaccuracy

of the representation. The solutions it finds are minima of the function

E=% ;(VIC—S‘.)2

Although they use the geometrical analogy described above, Rumelhart and Zipser actually use a
slightly different learning rule which cannot be interpreted as performing steepest descent in such a

simple error function.

There are many variations of competitive learning in the literature (Von der Malsburg, 1973;
Fukushima, 1975; Grossberg, 1976) and there is not space here to review them all. One major theme

has been to show that competitive learning can produce topographic maps if more than one hidden unit is

RS AR

TulR

ii
%
N

D9ty Baty L L) Ul

Figure 9: The input vectors are represented by points marked "x" on the surface of a sphere. The
weight vectors of the hidden units are represented by points marked "o". After competitive learning,

each weight vector will be close to the center of gravity of a cluster of input vectors.

. -_.--, .. TR TR " e N T e T
h\ V\ﬂi‘\-i‘-‘uﬂ\ AN, v NS, .Q'.A_.a._.e .L,c_.a ‘.‘.n"‘a".c-._.r*‘.e‘.ma_.a ...r" AR R AR ATV PR VROV

28

allowed to be active at a time and physically adjacent pairs of hidden units inhibit each other less than
more distant pairs (Kohonen, 1982; Amari, 1983). A model with similarities to competitive learning has
been used by Willshaw and Von der Malsburg (1979) to explain the formation of topographic maps
between the retina and the tectum. Recently, it has been shown that a variation of this model can be
interpreted as performing steepest descent in an error function and can be applied to a range of
optimization problems that involve topographic mappings between geometrical structures (Durbin and

Willshaw, 1987).

A related theme is o show that competitive learning can perform dimensionality reduction, so that
surplus degrees of freedom are removed from the input vector and it is represented accurately by a point
in a lower dimensional space (Kohonen, 1982). It is not clear how this compares in efficiency with

self-supervised back-propagation (see section 6.5) for dimensionality reduction.

Fukushima and Miyake (1982) have demonstrated that a version of competitive learning can be
used to allow a multilayer network to recognize simple two-dimensional shapes in a number of different
positions. After learning, the network can recognize a familiar shape in a novel position. The ability to
generalize across position depends on using a network in which the layers of units that learn are
interleaved with layers of non-learning units which are pre-wired to generalize across position. Thus, the
network &oes not truly leam translation invariance. By contrast, it is possible to design a back-
propagation network that starts with no knowledge of the effects of translation and no knowledge of which
input units are adjacent in the image. After sufficient experience, the network can correctly identify

familiar, simple shapes in novel positions (Hinton, 1987c¢).

10.1. The relationship between competitive learning and back-propagation

Because it is performing gradient descent in a measure of how accurately the input vector could be
reconstructed, competitive learning has a close relationship to self-supervised back-propagation.
Consider a three layer encoder network in which the desired states of the output units are the same as
the actual states of the input units. Suppose that each weight from an input unit to a hidden unit is
constrained to be identical to the weight from that hidden unit to the corresponding output unit. Suppose,
also, that the output units are linear and the hidden units, instead of using the usual non-linear transter
function, use the same “winner-take-all" non-linearity as is used in competitive learning. So only one

hidden unit will be active at a time, and the actual states of the output units will equal the weights of the

|
1
|

E
!
E
?
t
5
;
:

e e N N S N . RN
:'.n.!\.".,'f -:f:"‘.'fl_’a."u_ﬁ"_"-\.' AR A A ACACRE T OP O YR

29

active hidden unit. This makes it is easy to compute the error derivatives of the weights from the hidden
units to the output units. For weights from the active hidden unit the derivatives are simply proportional to
the difference between the actual and desired outputs (which equals the difference between the weight
and the corresponding component of the input vector). For weights from inactive hidden units the error

derivatives are all zero.

Normally, back-propagation is needed in order to compute the error derivatives of the weights from
the input units to the hidden units, but the winner-take-all non-linearity makes back-propagation
unnecessary in this network because all these derivatives are equal to zero. So long as the same hidden
unit wins the competition, its activity level is not changed by changing its input weights. At the point
where a small change in the weights would change the winner from one hidden unit to another, both
hidden units fit the input vector equally well, so changing winners does not aiter the total error in the
output (even though it may change the output vector a lot). Because the error derivatives are so simple,
we can still do the learning if we omit the output units altogether. This removes the output weights, and
SO we no longer need to constrain the input and output weights of a hidden unit to be identical. Thus the

simplified version of competitive learning is a degenerate case of self-supervised back-propagation.

it would be interesting if a mechanism as simple as competitive learning could be used to
implement gradient descent in networks that allow the m most activated hidden units to become fully
active (where m>1). This would allow the network to create more complex, distributed representations of
the input vectors. Unfortunately the implementation is not nearly as simple because it is no longer
possible to omit the output layer. The output units are needed to combine the effects of all the active
hidden units and compare the combined effect with the input vector in order to compute the error
derivatives of the output weights. Also, at the point at which one hidden unit ceases to be active and
another becomes active, there may be a large change in the total error, so at this point there is a
discontinuity in the error derivatives of the weights from the input to the hidden units. It thus appears that
the simplicity of the mechanism required for competitive leaming is crucially dependent on the fact that

only one hidden unit within a group is active.

. .\‘-l' .\' NN NN \‘-\ -‘. ‘\“\ .\ '.-. .-. . .- ¥

«)OS S "L T_Tr_7

i « et - . [N &) Yol 9.0 54 TR
||....-".~.w'nug\ el ¢ R ¥, 4 v 4 », iaf Uah 4.

30

11. Reinforcement learning procedures
There is a large and complex literature on reinforcement learning procedures which is beyond the
scope of this paper. The main aim of this section is to give an informal description of a few of the recent

ideas in the field that reveals their relationship to other types of connectionist leaming.

A central idea in many reinforcement learning procedures is that we can assign credit to a local
decision by measuring how it correlates with the global reinforcement signal. Various different values are
tried for each local variable (such as a weight or a state), and these variations are correlated with
variations in the global reinforcement signal. Normally, the local variations are the result of independent
stochastic processes, so if enough samples are taken each local variable can average away the noise
caused by the variation in the other variables to reveal its own effect on the global reinforcement signal
{(given the current expected behavior of the other variables). The network can then perform gradient
ascent in the expected reinforcement by altering the probability distribution associated with each local
variable in the direction that increases the expected reinforcement. If the probability distributions are

altered after each trial, the network performs a stochastic version of gradient ascent.

The main advantage of reinforcement learning is that it is easy to implement because, unlike back-
propagation which computes thg effect of changing a local variable, the "credit assignment” does not
require any special apparatus for communicating between the local variables. So reinforcement learning
can be used in complex systems which would be very hard to invert analytically. The main disadvantage
is that it is very inefficient when there are more than a few local variables. Even in the trivial case when
all the local variables contribute independently to the global reinforcement signal, order(NM) trials are
required to allow all of the M values of a variable to achieve a reasonable signal-to-noise ratio by
averaging away the noise caused by the N other variables. So reinforcement learning is very inefficient
for large systems unless they are divided into smaller modules. It is as if each person in the United States

tried to decide whether he or she had done a useful day's work by observing the gross national product

on a day by day basis.

A second disadvantage is that gradient ascent may get stuck in local optima. As a network
concentrates more and more of its trials on combinations of values that give the highest expected

reinforcement, it gets less and less information about the reinforcements caused by other combinations of

values.

e I P U]

'_"/,'{" a"i:\ (AL

t
N
|
i
)
;
>
Pl
!
"o
g
:

31

11.1. Delayed reinforcement

In many real systems, there is a delay between an action and the resultant reinforcement, so in
addition to the normal problem of deciding how to assign credit to decisions about hidden variables, there
is a temporal credit assignment problem (Sutton, 1984). In the iterative version of back-propagation
(section 6.4), temporal credit assignment is performed by explicitly computing the effect of each activity
level on the eventual outcome. In reinforcement learning procedures, temporal credit assignment is
typically performed by learning to associate "secondary” reinforcement values with the states that are
intermediate in time between the action and the external reinforcement. One important idea is to make
the reinforcement value of an intermediate state regress towards the weighted average of the
reinforcement values of its successors, where the weightings reflect the conditional probabilities of the
successors. In the limit, this causes the reinforcement value of each state to be equal to the expected
reinforcement of its successor, and hence equal to the expected final reinforcement.’2 Sutton (1987)
explains why, in a stochastic system, it is typically more efficient to regress towards the reinforcement
value of the next state rather than the reinforcement value of the final outcome. Barto, Sutton and
Anderson (1983) have demonstrated the usefulness of this type of procedure for learning with delayed

reinforcement.

11.2. The Ag_p procedure

One obvious way of mapping results from learning automata theory onto connectionist networks is
to treat each unit as an automaton and to treat the states it adopts as its actions. Barto and Anandan
(1985) describe a leaming procedure of this kind called "Associative Reward-Penalty” or Ag p, which uses
stochastic units like those in a Boltzmann machine (see equation 10). They prove that if the input vectors
are linearly independent and the network only contains one unit, Ag » finds the optimal values of the
waights. They also show empirically that if the same procedure is applied in a network of such units, the
hidden units develop useful representations. Williams (1986) has shown that a limiting case of the Ag p

procedure performs stochastic gradient ascent in expected reinforcement.

'2There may also be a "tax" imposed for faling to achieve the external reinforcement quickly. This can be implemented by
reducing the reinforcement each time it is regressed to an earlier state.

P R R P . S
S DI L W S S S SN 7N

R O R RGN A

T ST, Sl .

I R R S R N PN TN T L e U U SV W PR SO . ~ Ve

WINPT T 1 el LT AT

32

11.3. Achieving global optimality by reinforcement learning

Thatachar and Sastry (1985) use a different mapping between automata and connectionist
networks. Each connection is treated as an automaton and the weight-values that it takes on are its
actions. On each trial, each connection chooses a weight (from a discrete set of alternatives) and then
the network maps an input vector into an output vector and receives positive reinforcement if the output is
correct. They present a learning procedure for updating the probabilities of choosing particular weight-
values. If the probabilities are changed slowly enough, the procedure is guaranteed to converge on the
globally optimai combination of weights, even if the network has hidden layers. Unfortunately their
procedure requires exponential space because it involves storing and updating a table of estimated

expected reinforcements that contains one entry for every combination of weights.

11.4. The relative payoff procedure

If we are content to reach a local optimum, it is possible to use a very simple learning procedure. |
shall describe a connectionist implementation that uses yet another way of mapping automata onto
connectionist networks. Each connection is treated as a stochastic switch that has a certain probability of
being closed at any moment (Minsky, 1954). If the switch is open, the "post-synaptic* unit receives an
input of 0 along that connection, but if the switch is closed it transmits the state of the "pre-synaptic* unit.
A synapse can be modeled as a set of these stochastic switches arranged in parallel. Each unit
computes some fixed function of the vector of inputs that it receives on its incoming connections.

Learning involves altering the switch probabilities to maximize the expected reinforcement signal.

A learning procedure called Ly, can be applied in such networks. It is only guaranteed to find a
local optimum of the expected reinforcement, but it is very simple and does not require any

communication between the switches. A "trial” consists of four stages:

1. Set the switch configuration. For each switch in the network, decide whether it is open or closed

on this trial using the current switch probability. The decisions are made independently for all the

switches.

2. Run the network with this switch configuration. There are no constraints on the connectivity so
cycles are allowed, and the units can also receive external inputs at any time. The constraint on the
external inputs is that the probability distribution over patterns of external input must be independent of

the switch settings and it must be stationary.

...... o ;.:.;_:.‘_\: -._'_,.*.;_'-_,‘ Mot L O

oo

N L A L ‘-._‘-- LA
a7 m e m

AN ACAT S L AL LR VR SN LW SRR e e TR T

33

3. Compute the reinforcement signal. This can be any non-negative, stationary function of the

behavior of the network and of the external input it received during the trial.

4. Update the switch probabilities. For each switch that was closed during the trial, we increment
its probability by eR (1-p), where R is the reinforcement produced by the trial, p is the switch probability

and ¢ is a small coefficient. For each switch that was open, we decrement its probability by eR p.

if € is sufficiently small this procedure is guaranteed to hill-climb in expected reinforcement. The
"batch” version of the procedure involves observing the reinforcement signal over a large number of trials
before updating the switch probabilities. if a sutficient number of trials are observed, the following

“relative payoff* update procedure always increases expected reinforcement: Change the switch

W AW W W o T w———— s T T

probability to be equal to the fraction of the total reinforcement received when the switch was closed.
This can cause large changes in the probabilities, and | know of no proof that it hill-climbs in expected
reinforcement, but in practice it always works. The direction of the jump in the switch-probability-space
caused by the batch version of the procedure is the same as the expected direction of the small change

in switch probabilities caused by the “on-line” version.

The "on-line” version of this procedure has been proposed as a model of perceptual interpretation
(Harth, Pandya and Unnikrishnan, 1986). Williams (1986b) gives a detailed analysis of a similar learning

procedure.

A variation of the relative payoff procedure can be used if the goal is to make the "responses” of a

network match some desired probability distribution rather than maximize expected reinforcement. We

g simply define the reinforcement signal to be the desired probability of a response divided by the network’s
current probability of producing that response. If a sufficient number of trials are made before updating

the switch probabilities, it can be shown (Larry Gillick and Jim Baker, personal communication) that this

procedure is guaranteed to decrease an information theoretic measure of the difference between the

desired probability distribution over responses and the actual probability distribution. The measure is

actually the G measure described in the section on Boltzmann machines and the proof is an adaptation of

the proof of the EM procedure (Dempster, Laird and Rubin, 1976;.

<)
)

I VI T/ IV TV M M WLTWITW I AT RATR T AT RTRT AMPRERTRA

11.5. Genetic algorithms

Holland and his co-werkers (Holland, 1975; Grefenstette, 1985) have investigated a class of
learming procedures which they call "genetic algorithms” because they are explicitly inspired by an
analogy with evolution. Genetic algorithms operate on a population of individuals to produce a better
adapted population. In the simplest case, each individual member of the population is a binary vector,
and the two possible values of each component are analogous to two alternative versions (alleles) of a
gene. There is a fitness function which assigns a real-valued fitness to each individual and the aim of the
“learning” is to raise the average fitness of the population. New individuals are produced by choosing two

existing individuals as parents (with a bias towards individuals of higher than average fitness) and copying

WP

some component values from one parent and some from the other. Holland (1975) has shown that for a :
L4
large class of fithess functions, this is an effective way of discovering individuals that have high fitness. :j
4
o
by

11.6. Genetic learning and the relative payoff rule
If an entire generation of individuals is simultaneously replaced by a generation of their offspring,

genetic learning has a close relationship to the batch form of the L | procedure described in section 11.4.

This is most easily understood by starting with a particularly simple version of genetic learning in which ::

every individual in generatibn t+1 has many ditferent pafents in generation t. Candidate individuals for

&

generation t+1 are generated from the existing individuals in generation t in the following way: To decide

T, e

the value of the /" component of a candidate, we randomly choose one of the individuals in generation t -~

P

and copy the value of its i!" component. So the probability that the ;' component of a candidate has a

4 j,{n(.

[LA

particular value is simply the relative frequency of that value in generation t. A selection process then

ST

operates on the candidates: Some are kept to form generation t+1 and others are discarded. The fithess

of a candidate is simply the probability that it is not discarded by the selection process. Candidates that

XA

are kept can be considered to have received a reinforcement of 1 and candidates that arc discarded

7

receive a reinforcement of 0. After selection, the probability that the ;" component has a particular value
is equal to the fraction of the successful candidates that have that value. This is exactly the relative ¥,
payoff rule described in section 11.4. The probabilities it operates on are the relative frequencies of

alleles in the population instead of switch probabilities.

If the value of every component is determined by an independently chosen parent, all information
about the correlations between the values of different components is lost when generation t+1 is

produced from generation t. If, however, we use just two parenis we maximize the tendency for the

P T R LN S N N R O SO S, (i
AT LN o L0 T e .'47;1‘1‘)3’.&\4'.\&.&?.;.’“‘ >

mmmmwwwnwxwu-u---.u--—.,~_._ R ol S I O

35

pairwise and higher-order correlations to be preserved. This tendency is further increased if components
whose correlations are important are near one another and the values of nearby components are
normally taken from the same parent. So a popuiation of individuals can eftectively represent the
probabilities of small combinations of component values as well as the probabilities of individual values.
Genetic learning works well when the fitness of an individual is determined by these small combinations,

which Holland calls critical schemas.

11.7. iterated genetic hiil-climbing

It is possible to combine genetic leaming with gradient descent (or hill-climbing) to get a hybrid
leaming procedure called “iterated genetic hill-climbing” or “IGH" that works better than either learning
procedure alone (Brady, 1985; Ackley, 1987). IGH is as a form of multiple-restart hill-climbing in which
the starting points, instead of being chosen at random, are chosen by “mating" previously discovered
local optima. Alternatively, it can be viewed as genetic learning in which each new individual is allowed to
pertorm hill-climbing in the fitness function before being evaluated and added to the population. Ackley
(1987) shows that a stochastic variation of IGH can be implemented in a connectionist network that is

trying to learn which output vector produces a high enough payoff to satisfy some external criterion.

12. Discussion

This review has focused on a small number of recent connectionist learning procedures. There are
many other ihteresting procedures which have been omitted (Grossberg 1980; Volper and Hampson,
1986; Hampson and Volper, 1987; Hogg and Huberman, 1984; Kerszberg and Bergman, 1986, Edelman
and Reeke, 1982). Rather than attempting to cover all of these | conclude by discussing two major

problems that plague most of the procedures | have described.

12.1. Generalization

v

A major goal of connectionist learning is to produce networks that generalize correctly to new cases

2P

after training on a sufficiently large set of typical cases from some domain. In much of the research, there
is no format detfinition ot what it means to generalize correctly. The network is trained on examples from a
domain that the experimenter understands (like the family relationships domain described in section 6)
and it is judged to generalize correctly if its generalizations agree with those of the experimenter. This is
sufficient as an informal demonstration that the network can indeed perform non-trivial generalization, but

it gives little insight into the reasons why the generalizations of the network and the experimenter agree,

PP W DR IS =W NS A]

kv\-‘.‘-r«\h N N A e R Y e

.

I T T L O T T P O T R R R R T R e 2 ¥

36

and so it does not allow predictions to be made about when networks will generalize correctly and when

they will fail.

What is needed is a formal theory of what it means to generalize correctly. One approach that has
been used in studying the induction of grammars is to define a hypothesis space of possible grammars,
and to show that with enough training cases the system will converge on the correct grammar with

probability 1. This is called “identification in the limit* (Angluin and Smith, 1984).

Valiant (1984) has recently introduced a rather more subtle criterion of success in order to
distinguish classes of boolean function that can be induced from examples in polynomial time from
classes that require exponential time. He assumes that the hypothesis space is known in advance and
he allows the training cases to be selected according to any stationary distribution but insists that the
same distribution be used to generate the test cases. The induced function is considered to be good
enough if it differs from the true function on less than a small fraction, 1/h, of the test cases. A class of
boolean functions is considered to be learnable in polynomial time if, for any choice of h, there is a
probability of at least (1-1/4) that the induced function is good enough after a number of training
examples that is polynbmial in both h and the number of arguments of the boolean function. Using this
definition, Valiant has succeeded in showing that several interesting subclasses of boolean function are
leamable in polynomial time. Our understanding of other connectionist learning procedures would be
considerably improved if we could derive similar results that were as robust against variations in the

distribution of the training examples.

The work on inducing grammars or boolean functions may not provide an appropriate framework
tor studying systems that learn inherently stochastic functions, but the general idea of starting with a
hypothesis space of possible functions carries over. A widely used statistical approah involves
maximizing the a posteriori likeiihood of the model (i.e. the function) given the data. If the ¢ata really is
generated by a function in the hypothesis space and if the amount of information in the training data

greatly exceeds the amount of information required to specify a point in the hypothesis space, the

wa .t

maximum likelihood function is very probably the correct one, so the network will then generalize

7/

.

ﬁ.’T’ » ,

correctly. Some connectionist learning schemes (e.g. the Boltzmann machine learning procedure) can be

made to fit this approach exactly. If a Boltzmann machine is trained with much more data than there are

weights in the machine, and if it really does find the global minimum of G, and if the correct answer lies in

CEAEY

- ,r,_-'.-'r-l".r.ﬁ
JA'.'ic\.uD'.n"_.ﬁ'.l .AC" DAY “» ~ »

W!ﬂmh{xn P ¥V ¥ATAESE 20

37

the hypothesis space (which is defined by the architecture of the machine)'3, then there is every reason
to suppose that it will generalize correctly, even if it has only been trained on a small fraction of the
possible cases. Untortunately, this kind of guarantee is of little use for practical problems where we
usually know in advance that the "true™ model does not lie in the hypothesis space of the network. What :
needs to be shown is that the best available point within the hypothesis space (even though its not a

perfect model) will also generalize well to test cases. One approach to this issue is described by Natrajan
(1987).

A simple thought experiment shows that the "correct” generalization from a set of training cases,
however it is defined, must depend on how the input and output vectors are encoded. Consider a
mapping, M,, from entire input vectors onto entire input vectors and a mapping, Mg, from entire output
veciors onto entire output vectors. If we introduce a pre-coding stage that uses M, and a post-coding
stage that uses Mg we can convert a network that generalizes in one way into a network that generalizes

in any other way we choose simply by choosing M, and Mg, appropriately.

12.2. The speed of learning

Most existing connectionist learning procedures are slow, particularly procedures that construct
complicated internal representations. One way to speed them up is to use optimization methods such as
recursive least squares that converge faster. If the second derivatives can be computed or estimated
they can be used to pick a directiort for the weight change vector that yields taster convergence than the
direction of steepest descent (Parker, 1987). It remains to be seen how well such methods work for the

error surtaces generated by multilayer networks learning complex tasks.

A second method of speeding up learning is to use dedicated hardware for each connection and to
map the inner-loop operations into analog instead of digital hardware. As Alspector and Allen (1987)
have demonstrated, the speed of one particular learning procedure can be increased by a factor of about

a million if we combine these techniques. This significantly increases our ability to explore the behavior of

relatively small systems, but it is not a panacea. By using silicon in a different way we typically gain a

large but constant factor (optical techniques may eventually yield a huge constant factor), and by .
.

3

"30ne popular idea is that evolution implicitly chooses an appropriate hypothesis space by constraining the architecture of the '
network and leaming then identfies the most likely hypothesis within this space. How evolution armves at sensible hypothesis ':
spaces in reasonable time is usually unspecified. The evolutionary search for good architectures may actually be guided by learning ’,
{Hinton and Nowlan, 1987). K
o

N

x

-

-

PRV RE RS AT I A I B B Ny N AN AT B PO P
if.",\{-.’,-.'ﬁ LA L N D L R B S St (S)

M0 0 P o o LA JRR LRl ol

| dedicating a processor to each of the N connections we gain at most a factor of N in time at the cost of at
least a factor of N in space. For a leaming procedure with a time complexity of, say, O(N log N) a
speed-up of N makes a very big difference. For a procedure with a complexity of, say, O(N3) alternative

technologies and parallelism will help significantly for small systems, but not for large ones.'4

12.3. Hardware modularity

One of the best and commonest ways of fighting complexity is to introduce a modular, hierarchical
structure in which different modules are only loosely coupled (Simon, 1968). Pearl (1986) has shown that
it the interactions between a set of probabilistic variables are constrained to form a tree structure, there
are efficient parallel methods for estimating the interactions between “hidden" variables. The leaves of
the tree are the observables and the higher level nodes are hidden. The probability distribution for each
variable is constrained by the values of its immediate parents in the tree. Pearl shows that these
conditional probabilities can be recovered in time O(N log N) from the pairwise correlations between the
values of the leaves of the tree. Remarkably, it is also possible 1o recover the tree structure itself in the

same time.

Self-supervised back-propagation (see section 6.5) was originally designed to allow efficient

bottom-up learning in domains where there is hierarchical modular structure. Consider, for example, an

ensemble of input vectors that are generated in the following modular way: Each module has a few
high-level variables whose vaiues help to constrain the values of a larger number of low-level variables.
The low-level variables of each module are partitioned into several sets, and each set is identified with the

high-level variables ot a lower module as shown in figure 10.

VRO ARPORRNRANNDEA RS OAC PR RNN RS

Insert figure 10,about here
Now suppose that we treat the values of all the low-level variables of the leaf modules as a single
input vector. Given a sufficiently large ensemble of input vectors and an “innate" knowledge ot the
architecture of the generator, it should be possible to recover the underlying structure by using self-
supervised back-propagation to learn compact codes for the low-level variables of each leaf module. It is
possible to learn codes for all the lowest level modules in parallel. Once this has been done, the network

can leam codes at the next level up the hierarchy. The time taken to learn the whole hierarchical

'4Tsotsos (1987) makes similar arguments in a discussion of the space-complexity of vision

e mtAs - p - R IR ‘-.._.._‘. :c"-"'l'-'..-' .
fu\.:\i'\iN'.\':"I-\ % % e Y N, ‘_._‘_- 'j.‘:.\.‘ LY '.A\.A\,'.A\.A_ .n:'.A_A.

Figure 10: The lower-level variables of a high level module are the higher-level variables of several

low level modules.

39

structure (given parallel hardware) is just proportional to the depth of the tree and hence it is O(log N)
where N is the size of the input vector. An improvement on this strictly bottom-up scheme is described by
Ballard (1987). He shows why it is helpful to allow top-down influences from more abstract

representations to less abstract ones, and presents a working simulation.

12.4. Other types of modularity

There are several other helpful types of modularity that do not necessarily map so directly onto
modular hardware but are nevertheless important for fast learning and good generalization. Consider a
system which solves hard problems by creating its own subgoals. Once a subgoal has been created, the
system can learn how best to satisfy it and this learning can be useful (on other occasions) even if it was
a mistake to create that subgoal on this particular occasion. So the assignment of credit to the decision
to create a subgoal can be decoupled from the assignment of credit to the actions taken to achieve the
subgoal. Since the ability to achieve the subgoals can be learned separately from the knowledge about
when they are appropriate, a system can use achievable subgoals as building blocks for more complex
procedures. This avoids the problem of learning the complex procedures from scratch. it may also
constrain the way in which the complex procedures will be generalized to new cases, because the
knowledge about how to achieve each subgoal may already include knowledge about how to .cope with
variations. By using subgoals we can increase modularity and improve generalization even in systems

which use the very same hardware for solving the subgoal as was used for solving the higher level goal.

There is another type of reiationship between easy and hard tasks that can facilitate learning.
Sometimes a hard task can be decomposed into a set of easier constituents, but other times a hard task
may just be a version of an easier task that requires finer discrimination. For example, throwing a ball in
the general direction of another person is much easier than throwing it through a hoop, and a good way to
train a system to throw it through a hoop is 1o start by training it to throw it in the right general direction.
This relation between easy and hard tasks is used extensively in "shaping” the behavior of animals and
should also be useful for connectionist networks (particularly those that use reinforcement learning). 1t
resembles the use of multi-resolution techniques 1o speed up search in computer vision (Terzopoulos,
1984). Having learned the coarse tack, the weights should be close to a point in weight-space where

minor adjustments can tune them to perform the finer task.

One application where this technique should be helpful is in learning filters that discriminate

WP PN T W e T T LT M

.....

40

between very similar sounds. The approximate shapes of the filters can be learned using spectrograms
that have low resolution in time and frequency, and then the resoiution can be increased to allow the
filters to resolve fine details. By introducing a “"regularization” term that penalizes filters which have very
different weights for adjacent cells in the high-resolution spectrogram, it may be possible to allow filters to
*attend” to fine detail when necessary without incurring the cost of estimating all the weights from scratch.
The regularization term encodes prior knowledge that good filters should generally be smooth and so it
reduces the amount of information that must be extracted from the training data (Lang and Hinton, in

preparation).

12.5. Conclusion

There are now many different connectionist learning procedures that can construct appropriate
internal representations in small domains, and it is likely that many more variations will be discovered in
the next few years. Major new advances can be expected on a number of fronts: Techniques for making

the learning time scale better may be developed; attempts to apply connectionist procedures to difficult

tasks like speech recognition may actually succeed; new technologies may make it possible to simulate
much larger networks; and finally the computational insights gained from studying connectionist systems

may prove useful in interpreting the behavior of real neural networks.

3
"
»

Acknowledgements

| thank David Ackley, Joshua Alspector, Jim Baker, Dana Ballard, Andrew Barto, John Bridle, Yann Le
Cun, Mark Derthick, Larry Gillick, Ralph Linsker, Steve Nowian, David Plaut, David Rumelhart, Terry
Sejnowski, John Tsotsos and mem bers of the Camegie-Meilon Boltzmann group for helpful comments.

|
|

- Y 0
R LT R PO AR oS D R T N W N P I T T R R S A R R T X ‘g pgh e e 8'add 9 4 008" 0 0 00 '8 4
. RN

4]

References

Ackley, D. H., Hinton, G. E., Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines.
Cognitive Science, 9, 147-169.

Ackley, D. H. (1987). Stochastic Iterated Genetic Hill-climbing PhD Thesis). Carnegie-Mellon University,
Pittsburgh PA,

Alspector, J. & Allen, R. B. (1987). A neuromorphic VLSI leaming system. (n P. Loseleben (Ed.),
Advanced Research in VLSI: Proceedings of the 1987 Stanford Conference.. Cambridge, Mass.:
MIT Press.

Amari, S-1. (1967). A theory of adaptive pattern classifiers. /IEEE Transactions on Electronic Computers,
EC-16, 299-307.

Amari, S-. (1983). Field theory of self-organizing neural nets. /EEE Transactions on Sys tems, Man,
and Cybernetics, SMC-13, 741-748.

Anderson, J. A., & Hinton, G. E. (1981). Models of information processing in the brain. In G. E. Hinton &
J. A. Anderson (Eds.), Parallel models of associative memory. Hillsdale, NJ: Erlbaum.

Anderson, J. A. & Mozer, M. C. (1981). Categorization and selective neurons. In G. E. Hinton &

“J. A. Anderson (Eds.), Parallel Models of Associative Memory. Hillsdale, NJ: Erlbaum.

Bahl, L. R, Jelinek, F., & Mercer, R. L. (1983). A maximum likelihood approach to continuous speech
recognition. /EEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5, 179-190.

Ballard, D. H., Hinton, G. E., & Sejnowski, T. J. (1983). Parallel visual computation. Nature, 306, 21-26.

Ballard, D. H. (1986). Cortical connections and parallel processing: Structure and function. The
Behavioral and Brain Sciences, 9, 67-120.

Ballard, D. H. (1987). Modular learning in neural networks. Proc. AAAI-87. Seattle, WA.

Barlow, H. B. (1972). Single units and sensation: A neuron doctrine for perceptual psychology?
Perception, 1, 371-394.

Barto, A. G. Sutton, R. S. & Anderson, C. W. (1983). Neuronlike elements that solve difficult learning
control problems. /EEE Transactions on Systems, Man, & Cybernetics, .

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron
selectivity, Orientation specificity and binocular interaction in visual cortex. Journal of

Neuroscience, 2, 32-48.

Brady, R. M. (1985). Optimization strategies gleaned from biological evolution. Nature, 317, 804-806.

.............................

x "Wk g

. W

» ¥ u T oaN o m

,'{{-'f\

SV Y 0)T I WS WA o W e a ¥ s,

42

Crick, F. & Mitchisoh, G. (1983). The function of dream sleep. Nature, 304, 111-114.

Dempster, A.P., Laird, N. M., & Rubin, D. B. (1976). Maximum likelihood from incomplete data via the
EM algorithm. Proceedings of the Royal Statistical Society, , pp. 1-38.

Edelman, G. M. & Reeke, G. N. (1982). Selective networks capable of representative transformations,
limited generalizations,and associative memory. Proceedings of the National Academy of Sciences
USA, 79, 2091-2095.

Elman, J. L. and Zipser, D. (1987). Discovering the hidden structure of speech (Tech. Rep.). Institute for
Cognitive Science Technical Report No. 8701. University of California, San Diego.,

Feldman, J. A. & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6,
205-254.

Feldman, J. A. (1986). Neural representation of conceptual knowledge Technical Report TR189).
Department of Computer Science, University of Rochester, Rochester NY,

Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biological Cybernetics,
20, 121-136.

Fukushima, K., & Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition tolerant of
deformations and shifts in position. Pattern Recognition, 15, 455-469.

Geman, S., & Geman D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 721-741.
Gretenstette, J. J. (1985). Proceedings of an international conference on genetic algorithms and thegir

applications. .
Grossberg, S. (1976). Adaptive pattern classification and universal recoding, I: Parallel development and
coding of neural feature detectors. Biological Cybernetics, 23, 121-134.

Grossberg, S. (1980). How does the brain build a cognitive code? Psychological Review, 87, 1-51.

Hampson, S. E. & Volper, D. J. (1987). Disjunctive models of Boolean category learning. Biological X
Cybernetics, 55, 1-17. 5

Harth, E., Pandya, A. S. & Unnikrishnan, K. P. (19886). Perception as an optimization process. Proc.

N OB

IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. Miami, FL.

A u e

Hinton, G. E., & Anderson, J. A. (1981). Parallel models of associative memory. Hillsdale, NJ: Erlbaum.

»
v

Hinton, G. E. (1981). Implementing semantic networks in parallel hardware. in G. E. Hinton &

P AT

J. A. Anderson (Eds.), Parallel Models of Associative Memory. Hillsdale, NJ: Erlbaum.

-

1d.

Hinton, G. E. & Sejnowski, T. J. (1983). Optimal Perceptual Inference. Proceedings of the IEEE

PR SN Ui
I R B A

@

PR aEs

P P T I T T T S S i -"‘A"-‘f'f'l‘."'.-'.". S
a0 N : . . A e
Lt e W (2“L-.’L 2N '..‘-_'!-r!“"":fl'kg'-i..\' R T AT 7. Vg Wy Py s P TN TGN B G 1

-
-

-
-

AR RN AR RA R RNAKX KA/ o-nrualo;oc-wzn"'c"Q‘l!l‘"‘t~-"

43

conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer
Society.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In
D. E. Rumelhart, J. L. McClelland, & the PDP research group (Eds.), Parallel distributed
processing: Explorations in the microstructure of cognition. Cambridge, MA: Bradford Books.

Hinton, G. E., McClelland, J. L. & Rumelhat, D. E. (1986). Distributed representations. In
D. E. Rumelhart, J. L. McClelland, & the PDP research group (Eds.), Paralle/ distributed
processing: Explorations in the microstructure of cognition.. Cambridge, MA: Bradford Books.

Hinton G.E. (1988). Learning distributed representations of concepts. Proc. Eighth Annual Conference of
the Cognitive Science Society. Amherst, Mass..

Hinton, G. E. (1987). Learning translation invariant recognition in a massively parallel network. Proc.
Conf. Parallel Architectures and Languages Europe. Eindhoven, The Netherlands.

Hinton, G. E., McClelland, J. L. & Goodhill, G. J. (1987). Recirculation: A biclogically plausible
approximation to back-propagation Manuscript in preparation). Carnegie-Mellon University,
Pittsburgh PA,

Hogg, T. & Huberman, B. A. (1984). Understanding biological computation: Reliable learning and
recognition. Proceedings of the National Academy of Sciences, 81, 6871-6875.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences U.S.A., 79, 2554-2558.

Hopfield, J. J., Feinstein, D. 1. & Palmer, R. G. (1883). "Unlearning” has a stabilizing effect in collective
memories. Nature, Vol. 304.

Hopfield J.J., & Tank D.W. (1985). “"Neural" computation of decisions in optimization problems.
Biological Cybernetics, 52, 141-152.

Hummel, R. A., & Zucker, S. W. (1983). On the foundations of relaxation labeling processes. /EEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-5, 267-287.

Kerszberg, M. & Bergman, A. (1986). The evolution of data processing abilities in competing automata.
Proc. Computer Simulation in Brain Science. Copenhagen, Denmark.

S. Kirkpatrick, Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220,
671-680.

Kohonen, T. (1977). Associative memory: A system-theorectical approach. Berlin: Springer.

e e m e e ma e M e L
o e R C SR E Lt AN NS

ST TR RS T T U I PO I I W TP e e e
o, - - -
- n,

=

.:.
o % Y

Vu
ol

v 5

L B
)
Y

a
LA
4 .:'

v
e
Yy

A

FLae

o
»
et .
» N
ety
R R St Y

|)
oy

Atelafie> Aa% o iab bt Sak ot IV N oS A e S P

........

Kohonen, T. (1982). Clustering, taxoriomy. and topological maps of pattens. M. Lang (Ed.),
Proceedings of the Sixth International Conference on Pattern Recognition. Silver Spring, MD, IEEE
Computer Society Press.

Le Cun, Y. (1985). A learning scheme for asymmetric threshold networks. Proceedings o; Cognitiva 85.
Paris, France.

Linsker, R. (1986). From basic network principles to neural architecture: Emergence of spatial opponent
cells. Proceedings of the National Academy of Sciences USA, 83, 7508-7512.

Linsker, R. (1986). From basic network principles to neural architecture: Emergence of orientation-
selective cells. Proceedings of the National Academy of Sciences USA, 83, 8390-8394.

Linsker, R. (1986). From basic netwark principles to neural architecture: Emergence of orientation
columns. Proceedings of the National Academy of Sciences USA, 83, 8779-8783.

Linsker, R. (1987). Development of feature-analyzing cells and their columnar organization in a layered
self-adaptive network. R. Cotterill (Ed.), Computer Simulation in Brain Science. , Cambridge
University Press.

Marroquin, J. L. {1985). Probabilistic Solution of Inverse Problems. Doctoral dissertation, MIT,

Minsky, M. L. (1954). Theory of neural-analog reinforcement systems and its application to the brain-
model problem Ph.D. Dissertation). Princeton University,

Minsky, M. & Papert, S. (1969). Perceptrons. Cambridge, Mass: MIT Press.

Minsky, M. (1977). Plain Talk about Neurodevelopmental Epitemology. 5th International Joint
Conferences on Artificial Intelligence, Vol 2. .

Parker, D. B. (April 1985). Learning-logic (Tech. Rep.). TR-47, Sloan School of Management, MIT,
Cambridge, Mass.,

Parker, D. B. (1987). Second order back-propagation: An optimal adaptive algorithm for any adaptive
network Unpublished manuscript). ,

Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29(3),
241-288.

Pearimutter, B. A. & Hinton, G. E. (1986). G-Maximization: An unsupervised learning procedure for
discovering regularities. J. S. Denker (Ed.), Neural Networks for Computing: American Institute of

Physics Conference Proceedings 151. . ‘.

Plaut, D. C. and Hinton, G. E. (1987). Learning sets of filters using back-propagation. Computer Speech

and Language, .

Y
N
~

S 4" At
R PO VRS P W W WU YO WU PO W P WU 4ot ot Pa”ale’ e atn e Rad $a° 62 Sa¢ kot $at gat daV iy A

...f AR t“;“‘v'.’ ‘!'

W5
Ny
Prager, R., Harrison, T. D. and Fallside, F. (1986). Boltzmann Machines for speech recognition. f
Computer Speech and Language, 1, 1-20.
Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan Books. :':_
Rumelhart, D. E., & McClelland, J. L. ((in press) 1985). On the acquisition of the past tense in english. i"’
In McClelland, J. L. and Rumelhart, D. E. (Eds.), Parallel Distributed Processing: Explorations in the :-;)
Microstructure of Cognition. Volume 2: Applications. Cambridge, MA: Bradford Books. r,
Rumelhart, D. E. and Zipser, D. (1985). Competitive Leaming. Cognitive Science, 9, 75-112. ',2
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Leaming intemal representations by back- ,
propagating errors. Nature, 323, 533-536. DA
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error -
propagation. In D. E. Rumelhart, J. L. McClelland, & the PDP research group (Eds.), Parallel ~.
distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: Bradtord ;)
Books. A
Saund, E. (1986). Abstraction and representation of continuous variables in connectionist networks. -'
Proceedings of the Fifth National Conference on Artificial Intelligence. Los Altos, California,
Morgan Kauffman. ;
Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronouﬁce English text. t
Complex Systems, 1, 145-168.
Simon, H. A. (1969). The Sciences of the Artificial. MIT Press.
Sutton, R. S. (Feb 1984). Temporal credit assignment in reinforcement learning. Doctoral dissertation, -
University of Massachusetts, Amherst, MA, (COINS Technical Report 84-02). :.:
Sutton, R. S. (1987). Learning to predict by the method of temporal differences (Tech. Rep.). GTE ::
Laboratories technica! report TR87-509.1, :'E
Terzopoulos, D. (1984). Multiresolution computation of visible surface representations Ph.D. f
Dissenation). Department of Electrical Engineering and Computer Science, MIT, Cambridge MA, .
Tesauro, G. (1987). Scaling relationships in back-propagation learning: Dependence ofn training set size
Manuscript). Center for Complex Systems Research, University of lllinois at Urbana-Champaign, :',
Thatachar, M. A. L. & Sastry, P. S. (1985). Learning optimal discriminant functions through a cooperative
game of automata Technical Report EE/64/1985). Department of Electrical Engineering, Indian :
Institute of Science, Bangalore-560012, India,

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27:11, 1134-1142.

k6

Volper, D. J. & Hampson, S. F (1986). Connectionist models ot Boolean category representation.
Biological Cybernetics, 54, 393-406.

Von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in striate cortex. Kybemaetik,
14, 85-100.

Weisbuch, G. & Fogelman-Soulie, F. (1985). Scaling laws for the attractors of Hopfield networks. Journal/
of Physics Letters, 46, 623-630.

Widrow, B. & Hoff, M. E. (1960). Adaptive switching circuits. /RE WESCON Conv. Record, Part 4.. .

Williams, R. J. (1986). Reinforcement learning in connectionist networks: A mathematical analysis
Technical Report). Institute for Cognitive Science, University of California San Diego, La Jolla, CA,

Willshaw, D. J., Von der Malsburg, C. {1979). A marker induction mechanism for the establishment of
ordered neural mapping: Its application to the retino-tectal connections. Phil. Trans. Proc. R. Soc.
Lond., B, 287, 203-243.

Willshaw, D. (1981). Holography, associative memory, and inductive generalization. In G. E. Hinton &

J. A. Anderson (Eds.), Parallel models of associative memory. Hillsdale, NJ: Erlbaum.

60126 v) ‘oBajg ueg

Aeg uoyssyy

*py S3104YS S 0TI

NI ISU] priop ®as sqqny
suwag ‘'3 ‘A "9

60€08 0D ‘13pnog
ABoyoysAsg jo 1uamiawdag
ope10[0) O A1jS1dAjupn
uosSsSO§33 S1dpuy ‘Y "ig

Y1007 OGN '®psayiag
anuaay AqBny (ggy
suofitsynboy-A1f11994 D1ug

90/£S 1A ‘uosjpey

133115 uvosuyor A ZOZ1

-Bp1e ABoyoydhsq uapBoag ‘r ‘p
uISuoISEA JO A3)}S1dAJUp
ujaisdz weyiiiA ‘g

£6026 ¥O ‘sriof ™

800-2 'S31i1synBujl jo juawlaedag
ofayq ues

‘wjuzojrred Jo A1jsidajup

uwnig L3ixjjar aq

Z16Z0 14 ‘3dudpiaocig
100425 [®21pay
juasyredag Awolwuy
A13519a3up uacig
1auqg prog4 ‘1q

(saydo z1)

21 tunly

YIEZZ VA ‘eripuexaty

S ¥p(g ‘uojimis uoiawe)
13)1u2) vojiewioju]

192juyaa] asuajag

02819 11 'uBjedueyy
ASo1oyakeg 3o juamiiedag
Syoug((1 Jo A1§siaajup
ujyduoq [enuseg ‘iq

ZE€0T 00 ‘uorBupysep
94v Buirog
¥SOdV
IUILIS
337 30) 1012311(Q IIN}I088Y
seynmsig "% ‘¥ ‘g

0006-(122Z VA ‘unaBufpray
122115 Aouind Y1108 (08
dNI?1L 3po)

Y2195y [eARN JO 3ID[)J0
sjaeg [20f ‘1g

0£208 0D ‘@a4v £L1aoq
LT/ 8R4V
uew|[eqg uedig

0006-£1Z22 VA ‘*uoiBuytay
Szl 3poy

11§ £ougnd N 008
Yyd1easay [eAEN JO 3dY})0
ueiIn) [IeydjW ‘d 14vd

21620 I¥ ‘aduapiaory
J2UIDS [EINAN 103 131uad)
K11s13ajun unoag

13adoo) uoa -1q

000G-£122Z VA ‘uorBuytay
123115 ASuUind N 008

iz 3po)

KBojouydal yeaey Jo 33(]}0
13k10) Aatumis -1q

€18z€ 14 ‘opuer10 ISIN
1321])0 UOSTIEIT DOQ¥dN
opuvi1p ‘331330
Ydivasay paj4d ‘1013311qg
SUITIod °f uyor -aq

02819 11 ‘uBiedwey)
KBojoyr4sqd Jo i1uam)ivdag
sjouy[[] Jo A1§siaayjun
$310) 193eYIIN -1g

£0010 VN ‘1513ymy
s113snydessey

jJo K1ys1dajun

KJoyoyr4sg jo 1uadwiiedag

tieH uiqoy

uol1j 1D sa[avyY) ‘aq

80Z6Z S ‘Tiqen{o)

wy101e) YInoS 3O K1§SIIAjuy
ABojoydAsg 3o juam)iedag
1UaEd() "7 PIA®Q "1g

18§77 uojIngiIIsiq

6126 VD ‘oBajq uss

1§ 2pod

IUI) QY [PUU0SII AawyN
Buwyy paxy ‘1q

¥9007 0a ‘'uoiBujysep
LEISET T

Jo Avisiaagupn djyoyred

S$3J2Ua|dg pue si11y Jo aBay(o)
ABojoydrLsg

jo Judmyiewdag ‘ajey)

L1261 va ‘yBangsniid
KBoyoydAsg jo 1uam)iedag
Ay§s13ajun uoyan-ay8auire)
13 uadie) 1wg ‘10

GlL1ZO VW ‘uoisog

anuaay uolBujiuny Q9¢

V190G ‘sojiewayiey jo judm)redag
A1§S13ajUnN UIDISEIY) ION
13juadie) [jw9 ‘10

€18Z€ 14 ‘opuwyio
N3O INDAVELIAYN
¥S60-N 3p0D
xnwalg l1iaqoy -i1qd

90£¥6 V) ‘pilojumis
L1§s1aajun pirojuels
KBoroyr4sq jo ruam)iwdag
13a0g °H uopioy ‘1g

€182¢ 14 ‘opuwyio

321u3) juamdynby Bujuway (eaey
T1{(N 3p0)

saAjerg S Inylay -Ig

02690 10 ‘udasy a3y
uopiels reL ‘vl xog
Ayis3aatun ayex

XO(g wyor ‘1g

6810L V1 ‘susayig AaN
£10)w10qW®] Sd[RRUApPOLg (WASN
13UIIEG YUALY "IQ

¥2006 VO ‘sa(aduy soq
wjuioj§1ed 3o Arjsawajun
ABotoydAsg)o Juswyawdag
A11%wag uvosyoer -1g

ANV 19NZ

437 28D 3%py1quw)

peoy 13dney) ¢

yyun ABoroyd4sg payddy
112Un0) Yd1wIEIY [Ed PN
Kajappeg uejy -1g

CELZT VA ‘efrpuexajy
JNUIAY 1IAOYUIS|IZ | (0G

18V ‘10313211Q {edjuyda}p

ZY(0Z QW ‘n1B4 38a((0)
puwihaey jJo A1jsiaajup
ABoroydrAsg jo juam)r1vdag
uosiapuy 'S Lduey "1g

1261 vd ‘yBingsiiyg
Avysiaajupn uvo[(3N djBauae)
ABojoyd4sg jo rudeiaedag
uos13apuy ‘y§ uyor ‘iqg

71620 1§ ‘duapyaoyy
3dUI[O§ [EINaN 10} 131U3)
K11513A7Un uAo3g

uos1apuy sIwep °i1Q

SLIBL X1 ‘84v sxyooig
(2S4Y) TyH4v ‘DM
fsin{Ly ‘v preg ‘ig

26126 VI ‘oBajq u
1331Ud) Q93 [dvuosi13ag Aaey

uanyv P3 "1g

€182¢ 14 ‘opuejio
N3Jd1N03VYLAVN
K101e10q®] S1013ey uveny
LI(N 2pO)

$12{yy 213qoy "1

7€C0Z 20 ‘voiBuiysep

aseg ad104 iy Buyqiog
3121013311(Q SIS 3§
4S04V

CEIBL X1 ‘94v spooig
AdN/TUHAY
QW] S32IN0SaY UNENH 32104 1jY

CSYSS NM ‘spjodeauury
ABotoydAsg Jo \uawyiedag
el0sauuiy Jo Kiysiaatug
uvewaandy - di(11Yd 20

1517 uoyINqiIIS|g

e

WA A, A
;&;:'Jﬁdcﬂlb

u,

w_ M T

[t L g LA G) Gp L LR

W W, W

Lt

s’
-

o

a

-

-

OO

o Ve Va¥ ‘
«
.

€1ZS1 vd 'ydingsiayg

yieg Aajuayos

£BojoydAsg jo 1uawyredag
Kyysiaayun uopan-ajfuie)
iyery piaeg °1q

01690 1D ‘uaasy a3y
133115 uA01) O/
'S31101910Q¥] SUjRSEy
os(aN 11035 ‘1q

86501 AN ‘SI1yB§3g uaoiIn10f
g1z xoq ‘0°d

“3131D YI1wasIy UOSITA ‘[1 NEI
$8organ Lpuap °1qg

€0%L6 4O ‘duadng

uoB319 jo Ayysadajup
K3ojoyd4sg jo 1u3amyaedag
[y p IS "1Q

€EEZZ VA ‘Tripuexaly
anuIAy 13a04udsty 1005
M 1ISuU] yo1wasay Away
21%) S UOIN ‘3@

YULIT AN ‘aBedyiag
¥1-90D SH
uoji1e10d10) adedsoiray uewwni)

Sy1wy soj1lamaq -1Q

(AT 19A VAYNYD

o[qEN{o) Ysjifag ‘idanoduwp
1IN ujeN €G0Z-9S1d
K3o1oyd£sq 3o 1uawiredag

91qEn{0D YsTI1Ig Jo Aifsiaajun L

usmauyey [ajuwg -ig

€128 v ‘yBingsnipyg

yawd Aa[uayds

ARoyoyd4sq jo juawmjaedag
L1§839A1Up uOTTIN-|Baule)

8ZZIZ OGN ‘3[[1asuoie)
puethiey jo A1jsiaajupn
ABojoyd4s4 Jo yuaw)aedag
udsy] IV 1

S0186 VYA ‘2[11vag
uo1Bujysenq jo Lyysiaajup
KBojoyddsg jo 1uam)iedag

wnp (1eg cag

6018y IN ‘10qiy uuy
peoy piejyded Ofg

131u3) JUeM10)134 uewny
ueBjyoyy jo Ayysiaajup
WAeOK[OH Y113y "1q

6NIBY IN ‘10qQ1y uuy
BupiaaugBugz 1seg €Ieg
ueByOIN Jo Ar1S12Atup

PueRi O} uyor -ag

€606 VO ‘eyior e
asan

(S10-2) @2ouads 3af1juBo)
10} 3n1yisul
dnoin sea1sds 1uaBi{aaug
uey(oH wyr "1a

E1ZS1 V4 ‘yBingsniyg
j1udwlredag 3duajdg 133ndwo)
Aysa9atup vopan-ajdauae)
uolufl Aa1j3j03n ‘1q

€6026 V) ‘eryor e

o8a1q uesg
‘ejulojjed 3o A1jsaaajug
§20Ud}I503INAN 3O Juaw)iedaq
PARATTIN 'V uaadlg -1q

0680 (N ‘uoiaduyig

0%z 31fns ‘129115 nesseN (7
$22u2)25 ujeig

pu® [riOojARyag ayy ‘zoljpa

prUIRH ueAd)S

{0ZZZ VA ‘uorBugray
Y1I0N ‘peoy pagg gley
‘U] ‘S3J2IN0SIY JJ(eH

JI(eH N Aauay ‘1g

Y1SLZ ON ‘TTIR 1adey)
$211811RISO]g jO ju3dm)rwdag
vuyjoIe) yiroy jo Ayysiaajup
qiqeH °y§ pewweyny °1Q

S1ZZ0 VN ‘uoisog
A)§s1aajun uoysog

123115 uorBujmen)y 111

97 wmooy

sw21sAS aaji1depy 103 131uUd)
B13qsso19 uvaydars -1g

07819 11 ‘uBSjedweyy
£Bojoyd4s4 jo 1uawiawdag
syoujt1] jo A1jsiaajun
yBnoudazn w18 "10

ELEZZ VA ‘viipusxaty
INUIAY 12A0YUIS [T {00S
31NN jiSu]l ydr1easay Aw1y
Aw19 aukep -1g

(1LT6 VD ‘dujas]

JufAl] ‘ejurojiie) jJo AK1js1dajun
25u912§ 191ndwo) jo 1uImiedag
138uway g pieyd§y "ag

1005-(0€02 Ja 'uorBupysen

‘RN ‘Taay wilioen (289

131u3) (eI |paN Amiy pady 121(wp
uojieBiiIsaAu

[®2fuf1D) 3o Juamyawdag

‘g°yd ‘uwe)win uepior

GEZBL X1 ‘94v sxyoolg
OON/THRAY
31109 212384s 10

0YG80 N ‘voiddufig
118l uaa1n

ABooyd4s4 jo ruasiaedag
A1js1aajup uojaduyiyg
212qE80n(9) wes ‘a1q

S$8%Z 90116 V) ‘euapeseq

123115 U1 3 0L 01
pUTECITRL Y |

Y>1e253y [eABN JO 371])0

akorg ' auany ‘1g

ZEOOT AN ‘%105 A3y

123015 1YYl Az
101AvYyag

pue KBo{ojqoinay 10j 131ud)

23YyH UGSG—U g

€6026 V2 ‘eyror 1

ejuloj (8] Jo A1jsiaayup
Bujssado1g ucjlewiojuy

uesny 10} 12)1u3)

I3U1U39 uog "I1Q

GOLY6 VD ‘pirojueis

1uawl 1edag aduagrs 13)1ndwo)
A1ysiaajun pirojuels
Y1313S3Udn [3eyd|N "1Q

y1GLZ ON “T1IH tadey)
ABotoydLsq jJo juaw)iedag

Buj[Oo1€) YIION JO A1|S513aluf

13yBe| (e viaeyIIK i@

8(1Z0 VW ‘aBpjique)
193115 uvolnoy Qf
UPEAIN ¥ Nduwriag 1[og
Uasy|13pal4d -y uyor -1q

(12844 VA euuatp
123115 BIIS10) 1166

WdYNIN4 g r

L29Y1 AN ‘13isaysoy
1uawiiedag 22Ud12§ 121ndwo)
33183yd0y§ jJo K1jsraajuf)
uREplIa 'V wW0IIr 10

i1sng (321w "1g VIS
06602 20 ‘uoirBupysep 000Z€ ®3iva (3849 vd ‘yPingsiigg
BIZIZ Qk ‘dr0Wfiteg uoy1IvpuUNc4 IIUI[IS [eUO|IN NOINEDZL yieg Lajuayss
h-—- A jufy IG—IAOS n-:o—. gL uofIedNpgz pue [duuosiagd :-!I uey v >-¢m~0>«§ uoytan O—nun:ﬂw

ABot1oyo4sq
Jo Juamrawdag ‘apwy)

SuyraaugBug pue d1jjiudyjas
{adsuuey Aey “1q

Buji1aauiBug (ejnIsnpu]
1aydon (agueg "1g

ABojoyd4Asqd jo r1uam)redag
yeiey eyiaiey "

1817 uojInqiiisig 1817 vonInginisyq

s

N W
Ca
a3

Ny

-

Iy

NN

3 S e BN X A S A A ASIAAPY. PSR AP L s*2tive~ AR T E XL,

SRk - o b QAP b e
NS | ASH AR IMJ\ ‘ﬂnr) ! N

el e Y
FAr A I 'S8 S ot Nt W O B) » vy

el At Y.

o UM U OWOR

P W

ateat

901€6 VO ‘viwqieg wiuvg
A3o1oys4Lsg Jo 1uamiiwdag
Tingleg viueg
‘sruiojie) jo A1jsiaajupn
ouj193[124 ‘A Sdeel ‘1ig

16126 V) ‘oBajg ues

121U3) (JTY [PUu0S 134 Aawy
swa154s Bujujes) - 7¢ apo)
uosineg ®1ywq

£L{ZZ YA '®ripuexayy
INUAAY 13A0YUISTF [V
N1 jISU] Yrivasay Amy
nues®iQ lipnr " 1g

€0596 v) ‘0d5(dusiqd ueg (4¥
1583 184 ‘33}}30 vosiey
Yaiwasay [wa®y JO 23)})0
1syBojoyahs g

0006 {1222 VA ‘vorBugiay
*1§ Aduind ‘N 008
DHOO 290D N0
‘s121 1wy sdro)
aujiey 10] 1uRIS(sEY (w(radg

01560 AN ‘MI10% AON 044
6L xog

uopuoy ‘3313)0 yYouerg
Yo19352y WAy JO 211))0
15 Booyrhsg

(s21do) 9)

0005 L1222 VA ‘uorBuy(iy

192115 Aduind ‘N 008
1dZy11 3pod

‘QI19IsIY [wAwy O 3D71}30

0006-£1222 VA ‘uorBuyay
133215 A2uind N 009
dazyil 2p0)

‘yd1wasay [wAmy JO 331)]0

000S-L1Z2T YA ‘mor1Bujfay

192115 Louynd "N 008
dNIvil 3p0D

‘Ydauesey [BARy JO 351}3)0

000S-L1ZIT VA ‘uvorBuipav

1221318 Adugnd ‘N 008
€Cit apod

‘YIIRISIY [vARN JO 321330

1261 vd ‘udingsiigg
132115 1wy, 0 6L6€
y3ingsiiyg)o Ai1ysiaajup
121ud) g ¥ § Jujuiea
uosSS|yo ue[|31§ " IQ

75126 vy 'oBajg ues
1HOoLd 2P0D
WUIN Are1g1

5126 V) ‘nBaig ueg
(1 3pos) NN
‘a1)0 1 ioddng 12314

4126 vy ‘oBaiq uveg

(10 2p0)) NN

Qe seaisAy jeuacieziuedi §
S101)8y uveny ‘1013311Qg

S1ie v ‘oBaig ueg
190 #p0 1) (1NN
HERTEY BT 001 o
[auuns 134 pur 1saodudy ‘'1011311Q

{16 vy ‘olegg ueg
(CU PO} OudN
rAroarioqe s Bujuies) ‘1012311g

Le0le V) ‘er{Or Y

viul0j11®) jJo Aiisidajup
2OuB1O§ daf)fudu) 10) #naisuy
uveioN v preuog 1q

SSYCC MM “sijodeauugy
[({®H 1101 (3 BIIN
®108PUU Y JO AL|Ssdajup
uassiy or Aiey 1q

1261 vd ‘uBingsingg

jie4 Aajuayos

Kiysiaajup voypau 21Baure)
ABojoydhsq Jo 1uaeredag
Ti3AaN vag(v "q

t60Z6 vO ‘mrior =)

ejuIojI[e) Jo A1jsiaajup
35uafI§ aajijuBoy 10) inyfiIsSuU]
uoaRN pravd "1Q

70v1z QN ‘sytodeuuy

Awapedy [eaeN ‘S°D)
BupidauiBuz sedisis

Jo juamyindag ‘1jey)

18§17 wopIngia1siQg

I0Y1Z aW ‘sy{odeuuy

Auapedy [wamy ‘S°n
#7Ua(d§ 131ndmo)

Jo 1udsiawdag ‘3pRy)

?0{ %6 V) ‘oaly ojed
PeOY 1[IH 21040) (it
JNVY4 x013)

urioy wol "1Q

09$80 N ‘uoiddujig
A1gs1aagup uojaduyag
11el uaaig

ABo(oyrAsq Jo juamiiedag
1[N 'Y 3a%1029 -1

000§ (1227 VA ‘uorBujpay
£3ugnp "N 008

€e1y apod

yd1easay {eAmN jO 331§)0
zijAcakay 1y ‘g

0(£0Z 30 ‘uoiBujysep
{910 JOAVN

s31pn1S pus ‘juamdoiarag
‘Y1838 1JN 10} JUEIS|SEY
19YO 1IN samer ‘1qg

IS1Z6 VO ‘oBajq ueg
131U3) QY4 [dUu0s13g Aamy

ue[yawioy dor ‘10

{1LZ6 VI ‘dujas]

JUTAI] ‘ejulojjiw) jJo A)israajun
K10may puw Bujuiwa] jo

A20101Q01IN3N Y1 10} 31U

yBnenoy - samer -iqg

€1ZS1 vd ‘yBingsniyd
A1psi3atun vopaN-3jBaure)
ABojoysLsg jo juawiriedag
PURTI21JoN Ker ‘3g

10126 v2 ‘odaiq ues
193115 Y19 1837 0621

SJUF Ydpaocuwaer
‘adeag ‘12nodawyg 0/d
uvojieiodro) (wdjBofoydAsqd
apLIQOY sawwg "1Q

912¢8 2v ‘Katdiy
Yy x09 ‘0 ‘4
uod uog -1q

LUL26 VD) '3ugar]

A10may pue Bujuiea)
jo ABojojqoinay ay) 10} 131ud)
ejuio}fi®) jJo Aifsiaajup
youky hiey g

05502 2Q ‘uoiBuiysep

193115 Y 09t

uoylIePUNO4 IJUI]IS [euojIEN
S3JUI| IS [EININ pUs [rIOfjARYIG
1013311 uvojsyjajq Aindag
1duysdy uely ‘ig

0961 vd ‘yBingsiiyg
yBinqsiigg jo Ligsraagup
131ud) g9y Butuieay
plo®sal w ve(y ‘1a

¥52Z0 VW ‘weyijep

proy ueais Qv

*Jul ‘sajiozeroqe] 319
TY4 'SAUIYIS vofiewmiInuy
131A®] 113quy "1g

¥1GLZ ON “T1IH 13dey)

VELO LI®H 3iaeq

‘QE] duorsanyy 7] YL
rujtoIe) Y1104 JO L11513Aatun
uvesuw] £Loiey -aq

L3176 vD 'duparg

Joua1d§ 131ndwo) pue
uojiewiojuy jo juaw)ivdag
vjulojjre) jo K1ys13ajun
Aar3ueq ie4 "1g

76126 V) ‘oBajq ueg
pilwad[nog wuj|eI®) {/7
liyy 3po)

131U3) SWA1SAS uPAIQ [PaEN
113qew] ‘¥ piaeg ‘19

81120 YW '3Bpi1que)

IS puBNItY (€

11eH samer weyiiin 9(ZL
A11512A1un prearey
uvAissoy uaydais -aq

6018y W ‘10qty uuy

dv[g AvudIYySes GOZ

INIISU] YIIWIEAY yijeay |eruay
uveR Yo N Jo A1ysiantup

onjquioy ueafAs -Iq

1811 wopingiiisiq

S
Y
"
™

g

o e o

L s

RA s

Lo 458 24 2!

T

Pl th oih ate of

-

07819 11 ‘uBjedewyy
sfoull(l Jo A1js1aajup
KBojoydrAsq Jo 1uawiiedag
suanaip 1aydorsiayy ‘ig

Y1GLZ DN “T1IH 13deyd

10043s [ea1pay

KSotoysdyg)o juamiiedag
suj[oIR) YIION JO A1jSi1dAjup
1353 14YA K11eg “1g

76126 VD ‘oBajq ues
121UI) QY [dUU0S1dg Kamy
Tl 3po)

19213p sei8nog ‘19

L126€ SW ‘uosyder
1S YUk ¥ T ogZel
K1s19ajup 31w)S vosydep
uap Buns-yjys -a1g

8L1Z0 Vi ‘a8piqmw)

19311 uonoy Qg

TIUY ‘uTWAMN § RIUR1Ig V109
Uil iag -1

€1ZST vd ‘yBingsiiyg

ni1eg Aaguayog

K1gg19A1Uf O TIN-21R3uam)
KBojoyd4sg jo juamiawdag
uy¥] uep Jany ag

9C(96 IR ‘enjyey
166 xog

qel j1eAeH ‘OSON
19230 SeI{{IA ‘20

08£0Z 20 ‘voiBupysep
0Z-1dW_3po)
sd10) auyaey 'S ‘n ‘s1ddienbpeay

IS126 V3 ‘ofayg ueg
193UB) (YN [UU0EIAg AAmn
3103981§Q [®IjuUyda]
S[EPPSSAL SPER[“1Q

01€90 LD ‘udaeh Aay

1IINS uA0I) /7
§1019310q¥] sujysey
Aoaang 1 [y N ‘1q

SO0LY6 VD ‘piojunig

[1eH veplor -- [0z Bple
ABo(oydAsq jo juamyiedag
L11s13a1up projunis
uosdwoyl '3 paeydiy ‘1g

ZELOZ 00 ‘adv Bugrrod
IN/HS04V
KauBue) uyor ‘aQ

YIEZZ VA ‘®pipuexaty
uo1Buyysenq s oOt1

odys"H

uoEsiAld Yoaeasay Bujyuyesl
1SJIUR1DS Jje1s 10§uas
®YO1IS ‘r (neg °Jid

Y0161 vd ‘erydiaperiyd
193115 1nuyes CIBE
ABo1oyd2454 jo juawyiedag
ejueaTAsuuadg jo Ay [s19afup
Biaquiaig [neg °iqQ

80262 S ‘eiquniod

euj[ore) YInos jo Ayjsiaajun
AydeiBoan jo -idag

Muiag pay °1a

Z16Z0 I¥ ‘ddudpiaold
KBoroyd4sg jo juamyiedag
Ay§si1aajun uaoig

aysods 1 ulapiey ‘30

€1ZST vd ‘ylangsaiyd

Ni1eg Aajuayds

K)1S33A3UN uO| [aN- 21Baure)
KBotoydAsg jo 1uaw)redag
uomis 'y 113qiaf °iQ

6126 vO ‘oBayg ves
131U3) 0 9 ¥ [3uuosiadg AaeN
1§ apad

AIWISNYIS wepiyN ‘ad

0005-SL€0Z Da ‘uorBupysen
‘RS ‘INUIAY JOO[1IAD GGGy
016¢ apoD

£101910Q¥] YO1wasay [eaeN
Jayemnys [repuey ‘10

1s§7 vonInqinsig

] J
..-.. P w\.

6£120 YR ‘2%pjaque)
1IN

. Buj1aaugBug yesjueyday jo ‘rdag

uepiiays ‘g 1 ‘10

SLY90 1D ‘uROIIPPIN
K1isaangun uekaysap
KBoyoyddsg jo juaeivdag
S1Yd214ag diey -ig

ANVHY3D 1S3n

uaydey 001¢g

61 ‘N {1 uaydsyaz asseilsiafaer
uayoey Hiny 1ap

a18oroyd4sq 1an) INIjasu]

31101425 [1(1A SuH “1g

092S1 vd ‘ydingsiigyg
133115 ®I%H,0 616C
y3ingsiifg jo A1jS13ajup
13)1ua3 g9y Bujuiea
aIprauyds 131[wy "1qQ

€EETT VA ‘miipuexayy
INUIAY IIAOYUISTT (00§
AINIJISUT yoreasay LAway
Jomswes 3113qoy ‘1g

07690 1D ‘udasy aay
uojreig age; ‘vij xog
£So1oys48q jo judmiiedag
Ly1gs1aayuf atey

[anmes Inyliy “aq

01690 10 ‘usaep aay
192235 uwA0I) 02
§3]101v10q%] sUpySER
usEzI|es ‘7 '3 ‘30

€60Z6 v ‘*110r *]
Sjulojpie) jo afun
u:.»uuuous uojIveioju]
useny 103 I191us)
lieyiseny pia®g ‘1g

YU AN ‘aBedying
*d10) adwdsossy uwvemnin
yi-y00 dois tien
pi1®21Y 11D ‘10

€000T AN °'X10} AN

ANUIAY Yi)t4 ¢9

YI1easay [®[D0S 10] [00YI§ AdN
KBoyoyrdsy jo iuamisedag
B13qsjay [ajueg -ag

10217 GW ‘210wp){wg
133131S udd19 yinog 77
ABojoinay jo juam)iedag
JULI|PIN JO jooYydg
puvifiey jo L1ysiaajup
w1882y 'y samer -iqg

£12S1 va ‘ydingsiagy

Nieg Kajuayds

£11513A7un uoy (3N 31Baure)
KBoroysLsg jo 1uaw)edag
Ispag auvuk) -i1q

S0Ey6 VO ‘pilojumig

[{®H uepior 10zy “%pia
KBoroydAsq)o 1uae)iedag
Kigssanjupy projuerg
eRiQfIg 1)y ‘21g

€0Y(6 WO ‘aualing
ABoyoydAsgd jo 1uawm)redag
ucBaip Jo L1ysi1aajup
13usog agtw - 1g

60t08 0) ‘rapyinog
ABoyoydAsg 3o 1uaw)redag
ope10j0) JO Kyysiaajup
uosjogd 133134 -aqg

60€08 00 ‘13pinog
0pR1010) JO A1jsi1aajup
9y xog sndwe)
ABojoyd4sd jo 1uamiiedag
uos[0d ®ylley -aq

66120 VN ‘3Bp)iquen
LI

8to o113

ABojoyd4sg)0 1uam) 1edag
13U 4 UIARS °ag

0v6t6 vD 'A3rajuoy

100Y>S 33enpri8160q [maey
‘33uagd5 131ndeo) jo Jude; 1edaq

1517 woINQT IS Ig

x, 4 0 -Jl-

-- v %y]
EASEE, WP LLPA NS R AP

£9616 VD ‘4a1siuoy
AILG 3pu)

1ooyd>s dienpesBisod [eaey
wpAz [1Ieys1y "1g

0006 (1722 vA ‘uoiBurpay
“1s Auinh ‘N 008

Qi 3po)

4319352y [eawN JO 221}J0 '
12213uU107 udAa1S 1q 'y

v

'
05502 20 ‘uerBujysep "4
HOIBPUNOY 3IVITIS [PUOTIEN T,
Sa§s3r014 ‘

aat1juBo) ¢ Kr10way
Sunoy - ydasor "ig

10{%6 v ‘oafy oreg

01z 210§

anuaay worr kg (gt .

uoji1epunog 1udedo|arag waisks .
N0} [1e) Iy

01208 00 ‘gdv L1a0
W1/ 18H4Y
agniese) aor c1q

15126 v2 ‘oBaig ueg
13)1U3) (%Y [duvos1ag Aaey

111 ‘w233(np ade(ien "10

000§ -L122Z VA ‘uvorBujry
133125 AOuInd Y1108 008
dNLYLL 2p0D

Yd183E83Y [®A®N JO 3D1))0
Pi%apoop preuog -ig

€€EZT VA ‘Trapuexaty
INUIAY 1BAOGUISIT (K

S3JUB|OS []O0S pus [wiOjATYIgG
Yy 10} NNjISUl Amiy ‘S°p
JYSIA 'V 113qoy “1g

15§71 volInginsiQ

l

b ¢

W biady t's o CANRE IS LSl)b o lp Y

2

Yty at

';'l‘.:l'z Rgtaty ot 'ats

-

